Loading…
Direct observation of spin-forbidden transitions through the use of suitably polarized light
The study of excited triplet states of a molecular system is a difficult task because accessing them involves forbidden transitions from the singlet ground state. Nevertheless, absorption spectra of many molecules present, at low energies, the weak fingerprint of these triplet states. At higher ener...
Saved in:
Published in: | Nature communications 2014-06, Vol.5 (1), p.4126-4126, Article 4126 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of excited triplet states of a molecular system is a difficult task because accessing them involves forbidden transitions from the singlet ground state. Nevertheless, absorption spectra of many molecules present, at low energies, the weak fingerprint of these triplet states. At higher energies this information is usually masked by the intense signal of the singlet states. Here we show, for the specific case of the sulphur dioxide molecule, that the combined use of polarized light and molecular alignment can enhance the triplet part of the spectrum, even making it the only absorption process.
The study of excited triplet states in molecular systems is in some cases hindered by the difficulty in accessing them and the intense signals of singlet states. Here, the authors show that the combination of polarized light and molecular alignment can enhance the triplet absorption for sulphur dioxide. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms5126 |