Loading…
Communication Avoiding ILU0 Preconditioner
In this paper we present a communication avoiding ILU0 preconditioner for solving large linear systems of equations by using iterative Krylov subspace methods. Recent research has focused on communication avoiding Krylov subspace methods based on so-called s-step methods. However, there are not many...
Saved in:
Published in: | SIAM journal on scientific computing 2015-01, Vol.37 (2), p.C217-C246 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present a communication avoiding ILU0 preconditioner for solving large linear systems of equations by using iterative Krylov subspace methods. Recent research has focused on communication avoiding Krylov subspace methods based on so-called s-step methods. However, there are not many communication avoiding preconditioners yet, and this represents a serious limitation of these methods. Our preconditioner allows us to perform $s$ iterations of the iterative method with no communication, through ghosting some of the input data and performing redundant computation. To avoid communication, an alternating reordering algorithm is introduced for structured and well partitioned unstructured matrices, which requires the input matrix to be ordered by using a graph partitioning technique such as k-way or nested dissection. We show that the reordering does not affect the convergence rate of the ILU0 preconditioned system as compared to k-way or nested dissection ordering, while it reduces data movement and is expected to reduce the time needed to solve a linear system. In addition to communication avoiding Krylov subspace methods, our preconditioner can be used with classical methods such as GMRES to reduce communication. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/130930376 |