Loading…

Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean

Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles 2016-02, Vol.30 (2), p.293-310
Main Authors: Humphreys, Matthew P., Griffiths, Alex M., Achterberg, Eric P., Holliday, N. Penny, Rérolle, Victoire M. C., Menzel Barraqueta, Jan‐Lukas, Couldrey, Matthew P., Oliver, Kevin I. C., Hartman, Susan E., Esposito, Mario, Boyce, Adrian J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality‐controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near‐surface maximum rate of 1.80 ± 0.45 µmol kg−1 yr−1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ13CDIC) was also determined and used as an independent test of our method. We calculated a volume‐integrated anthropogenic CO2 accumulation rate of 2.8 ± 0.4 mg C m−3 yr−1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas. Key Points In the NE Atlantic, DIC has increased at all depths in the period 1981‐2013 AOU, TA, and δ13CDIC show that approximately 31% of DIC increase is anthropogenic Model output confirms that rates of change determined from observations are robust
ISSN:0886-6236
1944-9224
1944-8224
DOI:10.1002/2015GB005246