Loading…
The Shannon Total Variation
Discretization schemes commonly used for total variation regularization lead to images that are difficult to interpolate, which is a real issue for applications requiring subpixel accuracy and aliasing control. In the present work, we reconciliate total variation with Shannon interpolation and study...
Saved in:
Published in: | Journal of mathematical imaging and vision 2017-10, Vol.59 (2), p.341-370 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Discretization schemes commonly used for total variation regularization lead to images that are difficult to interpolate, which is a real issue for applications requiring subpixel accuracy and aliasing control. In the present work, we reconciliate total variation with Shannon interpolation and study a Fourier-based estimate that behaves much better in terms of grid invariance, isotropy, artifact removal and subpixel accuracy. We show that this new variant (called Shannon total variation) can be easily handled with classical primal–dual formulations and illustrate its efficiency on several image processing tasks, including deblurring, spectrum extrapolation and a new aliasing reduction algorithm. |
---|---|
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-017-0733-5 |