Loading…
Do Triangle-Free Planar Graphs have Exponentially Many $3$-Colorings?
Thomassen conjectured that triangle-free planar graphs have an exponential number of $3$-colorings. We show this conjecture to be equivalent to the following statement: there exists a positive real $\alpha$ such that whenever $G$ is a planar graph and $A$ is a subset of its edges whose deletion make...
Saved in:
Published in: | The Electronic journal of combinatorics 2017-09, Vol.24 (3) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thomassen conjectured that triangle-free planar graphs have an exponential number of $3$-colorings. We show this conjecture to be equivalent to the following statement: there exists a positive real $\alpha$ such that whenever $G$ is a planar graph and $A$ is a subset of its edges whose deletion makes $G$ triangle-free, there exists a subset $A'$ of $A$ of size at least $\alpha|A|$ such that $G-(A\setminus A')$ is $3$-colorable. This equivalence allows us to study restricted situations, where we can prove the statement to be true. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6736 |