Loading…
Parametric PDEs: sparse or low-rank approximations?
Abstract We consider adaptive approximations of the parameter-to-solution map for elliptic operator equations depending on a large or infinite number of parameters, comparing approximation strategies of different degrees of nonlinearity: sparse polynomial expansions, general low-rank approximations...
Saved in:
Published in: | IMA journal of numerical analysis 2018-10, Vol.38 (4), p.1661-1708 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We consider adaptive approximations of the parameter-to-solution map for elliptic operator equations depending on a large or infinite number of parameters, comparing approximation strategies of different degrees of nonlinearity: sparse polynomial expansions, general low-rank approximations separating spatial and parametric variables, and hierarchical tensor decompositions separating all variables. We describe corresponding adaptive algorithms based on a common generic template and show their near-optimality with respect to natural approximability assumptions for each type of approximation. A central ingredient in the resulting bounds for the total computational complexity is a new operator compression result in the case of infinitely many parameters. We conclude with a comparison of the complexity estimates based on the actual approximability properties of classes of parametric model problems, which shows that the computational costs of optimized low-rank expansions can be significantly lower or higher than those of sparse polynomial expansions, depending on the particular type of parametric problem. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drx052 |