Loading…
Liouville Field Theory and Log-Correlated Random Energy Models
An exact mapping is established between the c≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exa...
Saved in:
Published in: | Physical review letters 2017-03, Vol.118 (9), p.090601-090601, Article 090601 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An exact mapping is established between the c≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry-breaking methods. Operator product expansions in the LFT allow us to unveil novel universal behaviors of the log-correlated random energy class. High-precision numerical tests are given. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.118.090601 |