Loading…

Explicit formulas for $C^{1, 1}$ and $C^{1, \omega}_{\textrm{conv}}$ extensions of $1$-jets in Hilbert and superreflexive spaces

Given $X$ a Hilbert space, $\omega$ a modulus of continuity, $E$ an arbitrary subset of $X$, and functions $f:E\to\mathbb{R}$, $G:E\to X$, we provide necessary and sufficient conditions for the jet $(f,G)$ to admit an extension $(F, \nabla F)$ with $F:X\to \mathbb{R}$ convex and of class $C^{1, \ome...

Full description

Saved in:
Bibliographic Details
Published in:Journal of functional analysis 2018, Vol.274 (10), p.3003-3032
Main Authors: Azagra, Daniel, Le Gruyer, Erwan, Mudarra, Carlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given $X$ a Hilbert space, $\omega$ a modulus of continuity, $E$ an arbitrary subset of $X$, and functions $f:E\to\mathbb{R}$, $G:E\to X$, we provide necessary and sufficient conditions for the jet $(f,G)$ to admit an extension $(F, \nabla F)$ with $F:X\to \mathbb{R}$ convex and of class $C^{1, \omega}(X)$, by means of a simple explicit formula. As a consequence of this result, if $\omega$ is linear, we show that a variant of this formula provides explicit $C^{1,1}$ extensions of general (not necessarily convex) $1$-jets satisfying the usual Whitney extension condition, with best possible Lipschitz constants of the gradients of the extensions. Finally, if $X$ is a superreflexive Banach space, we establish similar results for the classes $C^{1, \alpha}_{\textrm{conv}}(X)$.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2017.12.007