Loading…

Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes

Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotub...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2016-12, Vol.1861 (12), p.2000-2010
Main Authors: Capel, Frédéric, Cheraiti, Naoufel, Acquaviva, Cécile, Hénique, Carole, Bertrand-Michel, Justine, Vianey-Saban, Christine, Prip-Buus, Carina, Morio, Béatrice
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783
cites cdi_FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783
container_end_page 2010
container_issue 12
container_start_page 2000
container_title Biochimica et biophysica acta
container_volume 1861
creator Capel, Frédéric
Cheraiti, Naoufel
Acquaviva, Cécile
Hénique, Carole
Bertrand-Michel, Justine
Vianey-Saban, Christine
Prip-Buus, Carina
Morio, Béatrice
description Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P
doi_str_mv 10.1016/j.bbalip.2016.10.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01594528v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1388198116302700</els_id><sourcerecordid>1835392619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783</originalsourceid><addsrcrecordid>eNp9kctu1DAUhi1E1ZbSN0AoS1hk8LFzsTdI1ahQpJG6gS2WLyeDR44T4qTSvH0dpXTJyj6_v3Px-Qn5AHQHFJovp50xOvhxx3KUpR2l7A25BtHKkjUg3uY7F6IEKeCKvEvpRCnUnNeX5Iq1LatZw6_J78eAesbCDQlLhyNGh3EO52LC4xLySypGHXo_r1CPszZD8KkvdHSFj2kJPhbJH2OeJB6zUuzZHljRn4d5MZjek4tOh4S3L-cN-fXt_uf-oTw8fv-xvzuUlstmLhnSmjtdC8dYJWkLXALvbA66BpiAVnSmqiuNxgprUSJQJqQx2Lac01bwG_J5q_tHBzVOvtfTWQ3aq4e7g1q1_HVZ1Uw8QWY_bew4DX8XTLPqfbIYgo44LEmB4DWXeYUyo9WG2mlIacLutTZQtbqgTmpzQa0urGp2Iad9fOmwmB7da9K_tWfg6wZg3smTx0kl6zFadH5COys3-P93eAZGRZkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835392619</pqid></control><display><type>article</type><title>Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes</title><source>Elsevier</source><creator>Capel, Frédéric ; Cheraiti, Naoufel ; Acquaviva, Cécile ; Hénique, Carole ; Bertrand-Michel, Justine ; Vianey-Saban, Christine ; Prip-Buus, Carina ; Morio, Béatrice</creator><creatorcontrib>Capel, Frédéric ; Cheraiti, Naoufel ; Acquaviva, Cécile ; Hénique, Carole ; Bertrand-Michel, Justine ; Vianey-Saban, Christine ; Prip-Buus, Carina ; Morio, Béatrice</creatorcontrib><description><![CDATA[Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (−47 and −28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (−30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA β-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial β-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ. •Oleate significantly alters palmitate channeling in C2C12 myotubes.•Impact of oleate on palmitate-induced insulin resistance follows an inverted U-curve.•Low dose of oleate is sufficient to enhance palmitate complete oxidation to CO2.•Dual effect of oleate on insulin signaling involves improved β-oxidation and inhibition of PKCθ and p38 MAPK.•Oleate overload increases incomplete β-oxidation and alters insulin signaling.]]></description><identifier>ISSN: 1388-1981</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1879-2618</identifier><identifier>DOI: 10.1016/j.bbalip.2016.10.002</identifier><identifier>PMID: 27725263</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Carnitine - analogs &amp; derivatives ; Carnitine - metabolism ; Cell Line ; Ceramides - metabolism ; Diglycerides - metabolism ; Fatty Acids - metabolism ; Food and Nutrition ; Insulin - metabolism ; Insulin Resistance - physiology ; Insulin signaling ; Life Sciences ; Lipid metabolism ; Lipotoxicity ; Mice ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; NF-kappa B - metabolism ; Oleic Acid - pharmacology ; Oxidation-Reduction - drug effects ; p38 Mitogen-Activated Protein Kinases - metabolism ; Palmitates - metabolism ; Phosphorylation - drug effects ; Phosphorylation - physiology ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Skeletal muscle ; Substrate partitioning ; Triglycerides - metabolism</subject><ispartof>Biochimica et biophysica acta, 2016-12, Vol.1861 (12), p.2000-2010</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783</citedby><cites>FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783</cites><orcidid>0000-0002-3828-6847 ; 0000-0002-2418-1438 ; 0000-0002-0133-0277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27725263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01594528$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Capel, Frédéric</creatorcontrib><creatorcontrib>Cheraiti, Naoufel</creatorcontrib><creatorcontrib>Acquaviva, Cécile</creatorcontrib><creatorcontrib>Hénique, Carole</creatorcontrib><creatorcontrib>Bertrand-Michel, Justine</creatorcontrib><creatorcontrib>Vianey-Saban, Christine</creatorcontrib><creatorcontrib>Prip-Buus, Carina</creatorcontrib><creatorcontrib>Morio, Béatrice</creatorcontrib><title>Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description><![CDATA[Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (−47 and −28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (−30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA β-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial β-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ. •Oleate significantly alters palmitate channeling in C2C12 myotubes.•Impact of oleate on palmitate-induced insulin resistance follows an inverted U-curve.•Low dose of oleate is sufficient to enhance palmitate complete oxidation to CO2.•Dual effect of oleate on insulin signaling involves improved β-oxidation and inhibition of PKCθ and p38 MAPK.•Oleate overload increases incomplete β-oxidation and alters insulin signaling.]]></description><subject>Animals</subject><subject>Carnitine - analogs &amp; derivatives</subject><subject>Carnitine - metabolism</subject><subject>Cell Line</subject><subject>Ceramides - metabolism</subject><subject>Diglycerides - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Food and Nutrition</subject><subject>Insulin - metabolism</subject><subject>Insulin Resistance - physiology</subject><subject>Insulin signaling</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipotoxicity</subject><subject>Mice</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>NF-kappa B - metabolism</subject><subject>Oleic Acid - pharmacology</subject><subject>Oxidation-Reduction - drug effects</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Palmitates - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphorylation - physiology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Skeletal muscle</subject><subject>Substrate partitioning</subject><subject>Triglycerides - metabolism</subject><issn>1388-1981</issn><issn>0006-3002</issn><issn>1879-2618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhi1E1ZbSN0AoS1hk8LFzsTdI1ahQpJG6gS2WLyeDR44T4qTSvH0dpXTJyj6_v3Px-Qn5AHQHFJovp50xOvhxx3KUpR2l7A25BtHKkjUg3uY7F6IEKeCKvEvpRCnUnNeX5Iq1LatZw6_J78eAesbCDQlLhyNGh3EO52LC4xLySypGHXo_r1CPszZD8KkvdHSFj2kJPhbJH2OeJB6zUuzZHljRn4d5MZjek4tOh4S3L-cN-fXt_uf-oTw8fv-xvzuUlstmLhnSmjtdC8dYJWkLXALvbA66BpiAVnSmqiuNxgprUSJQJqQx2Lac01bwG_J5q_tHBzVOvtfTWQ3aq4e7g1q1_HVZ1Uw8QWY_bew4DX8XTLPqfbIYgo44LEmB4DWXeYUyo9WG2mlIacLutTZQtbqgTmpzQa0urGp2Iad9fOmwmB7da9K_tWfg6wZg3smTx0kl6zFadH5COys3-P93eAZGRZkP</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Capel, Frédéric</creator><creator>Cheraiti, Naoufel</creator><creator>Acquaviva, Cécile</creator><creator>Hénique, Carole</creator><creator>Bertrand-Michel, Justine</creator><creator>Vianey-Saban, Christine</creator><creator>Prip-Buus, Carina</creator><creator>Morio, Béatrice</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3828-6847</orcidid><orcidid>https://orcid.org/0000-0002-2418-1438</orcidid><orcidid>https://orcid.org/0000-0002-0133-0277</orcidid></search><sort><creationdate>20161201</creationdate><title>Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes</title><author>Capel, Frédéric ; Cheraiti, Naoufel ; Acquaviva, Cécile ; Hénique, Carole ; Bertrand-Michel, Justine ; Vianey-Saban, Christine ; Prip-Buus, Carina ; Morio, Béatrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Carnitine - analogs &amp; derivatives</topic><topic>Carnitine - metabolism</topic><topic>Cell Line</topic><topic>Ceramides - metabolism</topic><topic>Diglycerides - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Food and Nutrition</topic><topic>Insulin - metabolism</topic><topic>Insulin Resistance - physiology</topic><topic>Insulin signaling</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipotoxicity</topic><topic>Mice</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>NF-kappa B - metabolism</topic><topic>Oleic Acid - pharmacology</topic><topic>Oxidation-Reduction - drug effects</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Palmitates - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphorylation - physiology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Skeletal muscle</topic><topic>Substrate partitioning</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capel, Frédéric</creatorcontrib><creatorcontrib>Cheraiti, Naoufel</creatorcontrib><creatorcontrib>Acquaviva, Cécile</creatorcontrib><creatorcontrib>Hénique, Carole</creatorcontrib><creatorcontrib>Bertrand-Michel, Justine</creatorcontrib><creatorcontrib>Vianey-Saban, Christine</creatorcontrib><creatorcontrib>Prip-Buus, Carina</creatorcontrib><creatorcontrib>Morio, Béatrice</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capel, Frédéric</au><au>Cheraiti, Naoufel</au><au>Acquaviva, Cécile</au><au>Hénique, Carole</au><au>Bertrand-Michel, Justine</au><au>Vianey-Saban, Christine</au><au>Prip-Buus, Carina</au><au>Morio, Béatrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>1861</volume><issue>12</issue><spage>2000</spage><epage>2010</epage><pages>2000-2010</pages><issn>1388-1981</issn><issn>0006-3002</issn><eissn>1879-2618</eissn><abstract><![CDATA[Because the protective effect of oleate against palmitate-induced insulin resistance may be lessened in skeletal muscle once cell metabolism is overloaded by fatty acids (FAs), we examined the impact of varying amounts of oleate on palmitate metabolic channeling and insulin signaling in C2C12 myotubes. Cells were exposed to 0.5mM of palmitate and to increasing doses of oleate (0.05, 0.25 and 0.5mM). Impacts of FA treatments on radio-labelled FA fluxes, on cellular content in diacylglycerols (DAG), triacylglycerols (TAG), ceramides, acylcarnitines, on PKCθ, MAPKs (ERK1/2, p38) and NF-ΚB activation, and on insulin-dependent Akt phosphorylation were examined. Low dose of oleate (0.05mM) was sufficient to improve palmitate complete oxidation to CO2 (+29%, P<0.05) and to alter the cellular acylcarnitine profile. Insulin-induced Akt phosphorylation was 48% higher in that condition vs. palmitate alone (p<0.01). Although DAG and ceramide contents were significantly decreased with 0.05mM of oleate vs. palmitate alone (−47 and −28%, respectively, p<0.01), 0.25mM of oleate was required to decrease p38 MAPK and PKCθ phosphorylation, thus further improving the insulin signaling (+32%, p<0.05). By contrast, increasing oleate concentration from 0.25 to 0.5mM, thus increasing total amount of FA from 0.75 to 1mM, deteriorated the insulin signaling pathway (−30%, p<0.01). This was observed despite low contents in DAG and ceramides, and enhanced palmitate incorporation into TAG (+27%, p<0.05). This was associated with increased incomplete FA β-oxidation and impairment of acylcarnitine profile. In conclusion, these combined data place mitochondrial β-oxidation at the center of the regulation of muscle insulin sensitivity, besides p38 MAPK and PKCθ. •Oleate significantly alters palmitate channeling in C2C12 myotubes.•Impact of oleate on palmitate-induced insulin resistance follows an inverted U-curve.•Low dose of oleate is sufficient to enhance palmitate complete oxidation to CO2.•Dual effect of oleate on insulin signaling involves improved β-oxidation and inhibition of PKCθ and p38 MAPK.•Oleate overload increases incomplete β-oxidation and alters insulin signaling.]]></abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27725263</pmid><doi>10.1016/j.bbalip.2016.10.002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3828-6847</orcidid><orcidid>https://orcid.org/0000-0002-2418-1438</orcidid><orcidid>https://orcid.org/0000-0002-0133-0277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-1981
ispartof Biochimica et biophysica acta, 2016-12, Vol.1861 (12), p.2000-2010
issn 1388-1981
0006-3002
1879-2618
language eng
recordid cdi_hal_primary_oai_HAL_hal_01594528v1
source Elsevier
subjects Animals
Carnitine - analogs & derivatives
Carnitine - metabolism
Cell Line
Ceramides - metabolism
Diglycerides - metabolism
Fatty Acids - metabolism
Food and Nutrition
Insulin - metabolism
Insulin Resistance - physiology
Insulin signaling
Life Sciences
Lipid metabolism
Lipotoxicity
Mice
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
NF-kappa B - metabolism
Oleic Acid - pharmacology
Oxidation-Reduction - drug effects
p38 Mitogen-Activated Protein Kinases - metabolism
Palmitates - metabolism
Phosphorylation - drug effects
Phosphorylation - physiology
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction - drug effects
Signal Transduction - physiology
Skeletal muscle
Substrate partitioning
Triglycerides - metabolism
title Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oleate%20dose-dependently%20regulates%20palmitate%20metabolism%20and%20insulin%20signaling%20in%20C2C12%20myotubes&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Capel,%20Fr%C3%A9d%C3%A9ric&rft.date=2016-12-01&rft.volume=1861&rft.issue=12&rft.spage=2000&rft.epage=2010&rft.pages=2000-2010&rft.issn=1388-1981&rft.eissn=1879-2618&rft_id=info:doi/10.1016/j.bbalip.2016.10.002&rft_dat=%3Cproquest_hal_p%3E1835392619%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-2e053da58d22490713913fc224f6128178fb454aebc8cce9e10289bbe77330783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835392619&rft_id=info:pmid/27725263&rfr_iscdi=true