Loading…

A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation

Milk responses to dietary change are influenced by the relative production level, that is, the distance between observed production and potential production. The closer the animal is to its potential, the smaller the expected response is to extra nutrients. Therefore, the aim of this work was to pro...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2017-05, Vol.100 (5), p.3641-3657
Main Authors: Daniel, J.B., Friggens, N.C., Van Laar, H., Ferris, C.P., Sauvant, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Milk responses to dietary change are influenced by the relative production level, that is, the distance between observed production and potential production. The closer the animal is to its potential, the smaller the expected response is to extra nutrients. Therefore, the aim of this work was to provide a method to quantify cow potential, to estimate subsequent responses to changes in nutrient supply. The observed efficiencies in net energy for lactation (NEL) and metabolizable protein (MP) are proposed as a basis to estimate the relative production level of the animal. The rationale for using NEL and MP efficiency (ratios of milk energy yield/NEL above maintenance supply and milk protein yield/MP above maintenance supply) builds on the uniformity of the observed relationships between size of the milk responses and extra NEL supply and MP supply, when centered on a given efficiency. From there, a pivot nutritional situation where MP and NEL efficiency are 0.67 and 1.00, respectively, was defined, from which milk responses could be derived across animals varying in production potential. An implicit assumption of using response equations centered on reference efficiency pivots is that the size of the response to a fixed change in nutrient supply, relative to the pivot, is identical for animals with different production capacities. The proposed approach was evaluated with 2 independent data sets, where different dietary treatments were applied during the whole lactation. In these data sets, MP and NEL above maintenance supply were calculated weekly using the recently updated INRA Systali feed units system. Differences in NEL and MP supply above maintenance between the extreme dietary treatments were large, on average 667 g of MP/d and 13 MJ of NEL/d (3.11 Mcal/d) in the first data set, and 513 g of MP/d and 29 MJ of NEL/d (6.93 Mcal/d) for the second data set. Milk energy yield and milk component yields were predicted with root mean square prediction errors between 7.6 and 13.5% and concordance correlation coefficients between 0.784 and 0.934, respectively. Assessed by the Akaike's information criterion, significant differences existed in the accuracy of prediction for milk energy yield and milk component yields between stages of lactation. However, the effects of stage of lactation were not consistent between data sets and, for most of the predicted variables, relatively small. We concluded that the pivot concept can be used to predict milk energy yield and
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2016-11938