Loading…
Convex hulls of random walks in higher dimensions: A large-deviation study
The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P=10^{-1000} to estimate large deviation properties. For arbitrary dimensions and large walk lengths T...
Saved in:
Published in: | Physical review. E 2017-12, Vol.96 (6-1), p.062101-062101, Article 062101 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P=10^{-1000} to estimate large deviation properties. For arbitrary dimensions and large walk lengths T, we suggest a scaling behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of the distributions in the tails. We underpin both with numerical data in d=3 and d=4 dimensions. Further, we confirm the analytically known means of those distributions and calculate their variances for large T. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/physreve.96.062101 |