Loading…

Video Denoising via Empirical Bayesian Estimation of Space-Time Patches

In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The hig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical imaging and vision 2018, Vol.60 (1), p.70-93
Main Authors: Arias, Pablo, Morel, Jean-Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we present a new patch-based empirical Bayesian video denoising algorithm. The method builds a Bayesian model for each group of similar space-time patches. These patches are not motion-compensated, and therefore avoid the risk of inaccuracies caused by motion estimation errors. The high dimensionality of spatiotemporal patches together with a limited number of available samples poses challenges when estimating the statistics needed for an empirical Bayesian method. We therefore assume that groups of similar patches have a low intrinsic dimensionality, leading to a spiked covariance model . Based on theoretical results about the estimation of spiked covariance matrices, we propose estimators of the eigenvalues of the a priori covariance in high-dimensional spaces as simple corrections of the eigenvalues of the sample covariance matrix. We demonstrate empirically that these estimators lead to better empirical Wiener filters. A comparison on classic benchmark videos demonstrates improved visual quality and an increased PSNR with respect to state-of-the-art video denoising methods.
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-017-0742-4