Loading…
Penalization of Galton–Watson processes
We apply the penalization technique introduced by Roynette, Vallois, Yor for Brownian motion to Galton–Watson processes with a penalizing function of the form P(x)sx where P is a polynomial of degree p and s∈[0,1]. We prove that the limiting martingales obtained by this method are most of the time c...
Saved in:
Published in: | Stochastic processes and their applications 2020-05, Vol.130 (5), p.3095-3119 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply the penalization technique introduced by Roynette, Vallois, Yor for Brownian motion to Galton–Watson processes with a penalizing function of the form P(x)sx where P is a polynomial of degree p and s∈[0,1]. We prove that the limiting martingales obtained by this method are most of the time classical ones, except in the super-critical case for s=1 (or s→1) where we obtain new martingales. If we make a change of probability measure with this martingale, we obtain a multi-type Galton–Watson tree with p distinguished infinite spines. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2019.09.005 |