Loading…
A library of ATMO forward model transmission spectra for hot Jupiter exoplanets
Abstract We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547–2710 K). This model grid has been develop...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2018-03, Vol.474 (4), p.5158-5185 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547–2710 K). This model grid has been developed using a 1D radiative–convective–chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and χ2 maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ∼0.56 to ∼1–1.3 for equilibrium temperatures from ∼900 to ∼2600 K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (∼460 000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stx3015 |