Loading…

A refined mean field approximation of synchronous discrete-time population models

Mean field approximation is a popular method to study the behaviour of stochastic models composed of a large number of interacting objects. When the objects are asynchronous, the mean field approximation of a population model can be expressed as an ordinary differential equation. When the objects ar...

Full description

Saved in:
Bibliographic Details
Published in:Performance evaluation 2018-10, Vol.126, p.1-21
Main Authors: Gast, Nicolas, Latella, Diego, Massink, Mieke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mean field approximation is a popular method to study the behaviour of stochastic models composed of a large number of interacting objects. When the objects are asynchronous, the mean field approximation of a population model can be expressed as an ordinary differential equation. When the objects are (clock-) synchronous the mean field approximation is a discrete time dynamical system. We focus on the latter. We study the accuracy of mean field approximation when this approximation is a discrete-time dynamical system. We extend a result that was shown for the continuous time case and we prove that expected performance indicators estimated by mean field approximation are O(1∕N)-accurate. We provide simple expressions to effectively compute the asymptotic error of mean field approximation, for finite time-horizon and steady-state, and we use this computed error to propose what we call a refined mean field approximation. We show, by using a few numerical examples, that this technique improves the quality of approximation compared to the classical mean field approximation, especially for relatively small population sizes.
ISSN:0166-5316
1872-745X
DOI:10.1016/j.peva.2018.05.002