Loading…

Linear-time CUR approximation of BEM matrices

In this paper we propose linear-time CUR approximation algorithms for admissible matrices obtained from the hierarchical form of Boundary Element matrices. We propose a new approach called geometric sampling to obtain indices of most significant rows and columns using information from the domains wh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2020-04, Vol.368 (112528), p.112528, Article 112528
Main Authors: Ayala, Alan, Claeys, Xavier, Grigori, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we propose linear-time CUR approximation algorithms for admissible matrices obtained from the hierarchical form of Boundary Element matrices. We propose a new approach called geometric sampling to obtain indices of most significant rows and columns using information from the domains where the problem is posed. Our strategy is tailored to Boundary Element Methods (BEM) since it uses directly and explicitly the cluster tree containing information from the problem geometry. Our CUR algorithm has precision comparable with low-rank approximations created with the truncated QR factorization with column pivoting (QRCP) and the Adaptive Cross Approximation (ACA) with full pivoting, which are quadratic-cost methods. When compared to the well-known linear-time algorithm ACA with partial pivoting, we show that our algorithm improves, in general, the convergence error and overcomes some cases where ACA fails. We provide a general relative error bound for CUR approximations created with geometrical sampling. Finally, we evaluate the performance of our algorithms on traditional BEM problems defined over different geometries.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2019.112528