Loading…

3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers

Background Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. Purpose To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2019-06, Vol.49 (6), p.1587-1599
Main Authors: Nemeth, Angeline, Segrestin, Bérénice, Leporq, Benjamin, Seyssel, Kevin, Faraz, Khuram, Sauvinet, Valérie, Disse, Emmanuel, Valette, Pierre‐Jean, Laville, Martine, Ratiney, Hélène, Beuf, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03
cites cdi_FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03
container_end_page 1599
container_issue 6
container_start_page 1587
container_title Journal of magnetic resonance imaging
container_volume 49
creator Nemeth, Angeline
Segrestin, Bérénice
Leporq, Benjamin
Seyssel, Kevin
Faraz, Khuram
Sauvinet, Valérie
Disse, Emmanuel
Valette, Pierre‐Jean
Laville, Martine
Ratiney, Hélène
Beuf, Olivier
description Background Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. Purpose To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) and the fat content in the liver from 3D chemical‐shift‐encoded (CSE)‐MRI acquisition, before and after a 31‐day overfeeding protocol. Study Type Prospective and longitudinal study. Subjects Twenty‐one nonobese healthy male volunteers. Field Strength/Sequence A 3D spoiled‐gradient multiple echo sequence and STEAM sequence were performed at 3T. Assessment AT volume was automatically segmented on CSE‐MRI between L2 to L4 lumbar vertebrae and compared to the dual‐energy X‐ray absorptiometry (DEXA) measurement. CSE‐MRI and MR spectroscopy (MRS) data were analyzed to assess the proton density fat fraction (PDFF) in the liver and the FA composition in SAT and VAT. Gas chromatography‐mass spectrometry (GC‐MS) analyses were performed on 13 SAT samples as a FA composition countermeasure. Statistical Tests Paired t‐test, Pearson's correlation coefficient, and Bland–Altman plots were used to compare measurements. Results SAT and VAT volumes significantly increased (P 
doi_str_mv 10.1002/jmri.26532
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01917470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220575414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03</originalsourceid><addsrcrecordid>eNp90ctu1DAYBeAIgWgpbHgAZIkNIKX4lnG8HE0LUzSoXApby4l_Mx458dROimbHI7Dm8XgSPJPSBQtWvujzseVTFE8JPiUY09ebLrpTOqsYvVcck4rSklb17H6e44qVpMbiqHiU0gZjLCWvHhZHDDNaUyaOi1_sDC3W0LlWe_R57ezw-8fP874NBgx6_-kC2RDR1-DHDpDuDVqEbhuSG1zo0cdR94Oz-ehhGSyaNyZ0rs9Rc-OyA3TlUhoBnY3R9d9yArq8gWgBzH75IYYhtMEj16MlaD-sd4e7-gEgpsfFA6t9gie340nx5c351WJZri7fXizmq7LlVNCSm5kAaITEwkreMGZqwrkwRnApmWg4k9a2tBGW1S1vGtNgbbkQtWAV5Rqzk-LllLvWXm2j63TcqaCdWs5Xar-HiSSCC3xDsn0x2W0M1yOkQXUuteC97iGMSVFCCZdshutMn_9DN2GM-W-yohRXouKEZ_VqUm0MKUWwdy8gWO3bVft21aHdjJ_dRo5NB-aO_q0zAzKB787D7j9R6l3udgr9AzUXsCI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220575414</pqid></control><display><type>article</type><title>3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers</title><source>Wiley</source><creator>Nemeth, Angeline ; Segrestin, Bérénice ; Leporq, Benjamin ; Seyssel, Kevin ; Faraz, Khuram ; Sauvinet, Valérie ; Disse, Emmanuel ; Valette, Pierre‐Jean ; Laville, Martine ; Ratiney, Hélène ; Beuf, Olivier</creator><creatorcontrib>Nemeth, Angeline ; Segrestin, Bérénice ; Leporq, Benjamin ; Seyssel, Kevin ; Faraz, Khuram ; Sauvinet, Valérie ; Disse, Emmanuel ; Valette, Pierre‐Jean ; Laville, Martine ; Ratiney, Hélène ; Beuf, Olivier</creatorcontrib><description>Background Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. Purpose To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) and the fat content in the liver from 3D chemical‐shift‐encoded (CSE)‐MRI acquisition, before and after a 31‐day overfeeding protocol. Study Type Prospective and longitudinal study. Subjects Twenty‐one nonobese healthy male volunteers. Field Strength/Sequence A 3D spoiled‐gradient multiple echo sequence and STEAM sequence were performed at 3T. Assessment AT volume was automatically segmented on CSE‐MRI between L2 to L4 lumbar vertebrae and compared to the dual‐energy X‐ray absorptiometry (DEXA) measurement. CSE‐MRI and MR spectroscopy (MRS) data were analyzed to assess the proton density fat fraction (PDFF) in the liver and the FA composition in SAT and VAT. Gas chromatography‐mass spectrometry (GC‐MS) analyses were performed on 13 SAT samples as a FA composition countermeasure. Statistical Tests Paired t‐test, Pearson's correlation coefficient, and Bland–Altman plots were used to compare measurements. Results SAT and VAT volumes significantly increased (P &lt; 0.001). CSE‐MRI and DEXA measurements were strongly correlated (r = 0.98, P &lt; 0.001). PDFF significantly increased in the liver (+1.35, P = 0.002 for CSE‐MRI, + 1.74, P = 0.002 for MRS). FA composition of SAT and VAT appeared to be consistent between localized‐MRS and CSE‐MRI (on whole segmented volume) measurements. A significant difference between SAT and VAT FA composition was found (P &lt; 0.001 for CSE‐MRI, P = 0.001 for MRS). MRS and CSE‐MRI measurements of the FA composition were correlated with the GC‐MS results (for ndb: rMRS/GC‐MS = 0.83 P &lt; 0.001, rCSE‐MRI/GC‐MS = 0.84, P = 0.001; for nmidb: rMRS/GC‐MS = 0.74, P = 0.006, rCSE‐MRI/GC‐MS = 0.66, P = 0.020) Data Conclusion The follow‐up of liver PDFF, volume, and FA composition of AT during an overfeeding diet was demonstrated through different methods. The CSE‐MRI sequence associated with a dedicated postprocessing was found reliable for such quantification. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1587–1599.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.26532</identifier><identifier>PMID: 30328237</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adipose tissue ; Bioengineering ; Body weight ; Chemical equilibrium ; chemical shift‐encoded imaging ; Coding ; Composition ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Dual energy X-ray absorptiometry ; Endocrinology and metabolism ; fatty acid composition ; Fatty acids ; Field strength ; Gas chromatography ; gas chromatography‐mass spectrometry ; Human health and pathology ; Imaging ; in vivo ; Life Sciences ; Liver ; Magnetic resonance imaging ; Magnetic resonance spectroscopy ; Mass spectrometry ; Mass spectroscopy ; MR spectroscopy ; Organic chemistry ; overfeeding ; Overweight ; Proton density (concentration) ; Statistical analysis ; Statistical methods ; Statistical tests ; Steam ; Vertebrae</subject><ispartof>Journal of magnetic resonance imaging, 2019-06, Vol.49 (6), p.1587-1599</ispartof><rights>2018 International Society for Magnetic Resonance in Medicine</rights><rights>2018 International Society for Magnetic Resonance in Medicine.</rights><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03</citedby><cites>FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03</cites><orcidid>0000-0002-4516-4565 ; 0000-0002-6273-9498 ; 0000-0002-4045-0503 ; 0000-0002-3408-4156 ; 0000-0002-0662-2172 ; 0000-0001-8853-854X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30328237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01917470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemeth, Angeline</creatorcontrib><creatorcontrib>Segrestin, Bérénice</creatorcontrib><creatorcontrib>Leporq, Benjamin</creatorcontrib><creatorcontrib>Seyssel, Kevin</creatorcontrib><creatorcontrib>Faraz, Khuram</creatorcontrib><creatorcontrib>Sauvinet, Valérie</creatorcontrib><creatorcontrib>Disse, Emmanuel</creatorcontrib><creatorcontrib>Valette, Pierre‐Jean</creatorcontrib><creatorcontrib>Laville, Martine</creatorcontrib><creatorcontrib>Ratiney, Hélène</creatorcontrib><creatorcontrib>Beuf, Olivier</creatorcontrib><title>3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. Purpose To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) and the fat content in the liver from 3D chemical‐shift‐encoded (CSE)‐MRI acquisition, before and after a 31‐day overfeeding protocol. Study Type Prospective and longitudinal study. Subjects Twenty‐one nonobese healthy male volunteers. Field Strength/Sequence A 3D spoiled‐gradient multiple echo sequence and STEAM sequence were performed at 3T. Assessment AT volume was automatically segmented on CSE‐MRI between L2 to L4 lumbar vertebrae and compared to the dual‐energy X‐ray absorptiometry (DEXA) measurement. CSE‐MRI and MR spectroscopy (MRS) data were analyzed to assess the proton density fat fraction (PDFF) in the liver and the FA composition in SAT and VAT. Gas chromatography‐mass spectrometry (GC‐MS) analyses were performed on 13 SAT samples as a FA composition countermeasure. Statistical Tests Paired t‐test, Pearson's correlation coefficient, and Bland–Altman plots were used to compare measurements. Results SAT and VAT volumes significantly increased (P &lt; 0.001). CSE‐MRI and DEXA measurements were strongly correlated (r = 0.98, P &lt; 0.001). PDFF significantly increased in the liver (+1.35, P = 0.002 for CSE‐MRI, + 1.74, P = 0.002 for MRS). FA composition of SAT and VAT appeared to be consistent between localized‐MRS and CSE‐MRI (on whole segmented volume) measurements. A significant difference between SAT and VAT FA composition was found (P &lt; 0.001 for CSE‐MRI, P = 0.001 for MRS). MRS and CSE‐MRI measurements of the FA composition were correlated with the GC‐MS results (for ndb: rMRS/GC‐MS = 0.83 P &lt; 0.001, rCSE‐MRI/GC‐MS = 0.84, P = 0.001; for nmidb: rMRS/GC‐MS = 0.74, P = 0.006, rCSE‐MRI/GC‐MS = 0.66, P = 0.020) Data Conclusion The follow‐up of liver PDFF, volume, and FA composition of AT during an overfeeding diet was demonstrated through different methods. The CSE‐MRI sequence associated with a dedicated postprocessing was found reliable for such quantification. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1587–1599.</description><subject>Adipose tissue</subject><subject>Bioengineering</subject><subject>Body weight</subject><subject>Chemical equilibrium</subject><subject>chemical shift‐encoded imaging</subject><subject>Coding</subject><subject>Composition</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Dual energy X-ray absorptiometry</subject><subject>Endocrinology and metabolism</subject><subject>fatty acid composition</subject><subject>Fatty acids</subject><subject>Field strength</subject><subject>Gas chromatography</subject><subject>gas chromatography‐mass spectrometry</subject><subject>Human health and pathology</subject><subject>Imaging</subject><subject>in vivo</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic resonance spectroscopy</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>MR spectroscopy</subject><subject>Organic chemistry</subject><subject>overfeeding</subject><subject>Overweight</subject><subject>Proton density (concentration)</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Steam</subject><subject>Vertebrae</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90ctu1DAYBeAIgWgpbHgAZIkNIKX4lnG8HE0LUzSoXApby4l_Mx458dROimbHI7Dm8XgSPJPSBQtWvujzseVTFE8JPiUY09ebLrpTOqsYvVcck4rSklb17H6e44qVpMbiqHiU0gZjLCWvHhZHDDNaUyaOi1_sDC3W0LlWe_R57ezw-8fP874NBgx6_-kC2RDR1-DHDpDuDVqEbhuSG1zo0cdR94Oz-ehhGSyaNyZ0rs9Rc-OyA3TlUhoBnY3R9d9yArq8gWgBzH75IYYhtMEj16MlaD-sd4e7-gEgpsfFA6t9gie340nx5c351WJZri7fXizmq7LlVNCSm5kAaITEwkreMGZqwrkwRnApmWg4k9a2tBGW1S1vGtNgbbkQtWAV5Rqzk-LllLvWXm2j63TcqaCdWs5Xar-HiSSCC3xDsn0x2W0M1yOkQXUuteC97iGMSVFCCZdshutMn_9DN2GM-W-yohRXouKEZ_VqUm0MKUWwdy8gWO3bVft21aHdjJ_dRo5NB-aO_q0zAzKB787D7j9R6l3udgr9AzUXsCI</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Nemeth, Angeline</creator><creator>Segrestin, Bérénice</creator><creator>Leporq, Benjamin</creator><creator>Seyssel, Kevin</creator><creator>Faraz, Khuram</creator><creator>Sauvinet, Valérie</creator><creator>Disse, Emmanuel</creator><creator>Valette, Pierre‐Jean</creator><creator>Laville, Martine</creator><creator>Ratiney, Hélène</creator><creator>Beuf, Olivier</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4516-4565</orcidid><orcidid>https://orcid.org/0000-0002-6273-9498</orcidid><orcidid>https://orcid.org/0000-0002-4045-0503</orcidid><orcidid>https://orcid.org/0000-0002-3408-4156</orcidid><orcidid>https://orcid.org/0000-0002-0662-2172</orcidid><orcidid>https://orcid.org/0000-0001-8853-854X</orcidid></search><sort><creationdate>201906</creationdate><title>3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers</title><author>Nemeth, Angeline ; Segrestin, Bérénice ; Leporq, Benjamin ; Seyssel, Kevin ; Faraz, Khuram ; Sauvinet, Valérie ; Disse, Emmanuel ; Valette, Pierre‐Jean ; Laville, Martine ; Ratiney, Hélène ; Beuf, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipose tissue</topic><topic>Bioengineering</topic><topic>Body weight</topic><topic>Chemical equilibrium</topic><topic>chemical shift‐encoded imaging</topic><topic>Coding</topic><topic>Composition</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Dual energy X-ray absorptiometry</topic><topic>Endocrinology and metabolism</topic><topic>fatty acid composition</topic><topic>Fatty acids</topic><topic>Field strength</topic><topic>Gas chromatography</topic><topic>gas chromatography‐mass spectrometry</topic><topic>Human health and pathology</topic><topic>Imaging</topic><topic>in vivo</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic resonance spectroscopy</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>MR spectroscopy</topic><topic>Organic chemistry</topic><topic>overfeeding</topic><topic>Overweight</topic><topic>Proton density (concentration)</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Steam</topic><topic>Vertebrae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemeth, Angeline</creatorcontrib><creatorcontrib>Segrestin, Bérénice</creatorcontrib><creatorcontrib>Leporq, Benjamin</creatorcontrib><creatorcontrib>Seyssel, Kevin</creatorcontrib><creatorcontrib>Faraz, Khuram</creatorcontrib><creatorcontrib>Sauvinet, Valérie</creatorcontrib><creatorcontrib>Disse, Emmanuel</creatorcontrib><creatorcontrib>Valette, Pierre‐Jean</creatorcontrib><creatorcontrib>Laville, Martine</creatorcontrib><creatorcontrib>Ratiney, Hélène</creatorcontrib><creatorcontrib>Beuf, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemeth, Angeline</au><au>Segrestin, Bérénice</au><au>Leporq, Benjamin</au><au>Seyssel, Kevin</au><au>Faraz, Khuram</au><au>Sauvinet, Valérie</au><au>Disse, Emmanuel</au><au>Valette, Pierre‐Jean</au><au>Laville, Martine</au><au>Ratiney, Hélène</au><au>Beuf, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2019-06</date><risdate>2019</risdate><volume>49</volume><issue>6</issue><spage>1587</spage><epage>1599</epage><pages>1587-1599</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Background Overweight and obesity are major worldwide health concerns characterized by an abnormal accumulation of fat in adipose tissue (AT) and liver. Purpose To evaluate the volume and the fatty acid (FA) composition of the subcutaneous adipose tissue (SAT) and the visceral adipose tissue (VAT) and the fat content in the liver from 3D chemical‐shift‐encoded (CSE)‐MRI acquisition, before and after a 31‐day overfeeding protocol. Study Type Prospective and longitudinal study. Subjects Twenty‐one nonobese healthy male volunteers. Field Strength/Sequence A 3D spoiled‐gradient multiple echo sequence and STEAM sequence were performed at 3T. Assessment AT volume was automatically segmented on CSE‐MRI between L2 to L4 lumbar vertebrae and compared to the dual‐energy X‐ray absorptiometry (DEXA) measurement. CSE‐MRI and MR spectroscopy (MRS) data were analyzed to assess the proton density fat fraction (PDFF) in the liver and the FA composition in SAT and VAT. Gas chromatography‐mass spectrometry (GC‐MS) analyses were performed on 13 SAT samples as a FA composition countermeasure. Statistical Tests Paired t‐test, Pearson's correlation coefficient, and Bland–Altman plots were used to compare measurements. Results SAT and VAT volumes significantly increased (P &lt; 0.001). CSE‐MRI and DEXA measurements were strongly correlated (r = 0.98, P &lt; 0.001). PDFF significantly increased in the liver (+1.35, P = 0.002 for CSE‐MRI, + 1.74, P = 0.002 for MRS). FA composition of SAT and VAT appeared to be consistent between localized‐MRS and CSE‐MRI (on whole segmented volume) measurements. A significant difference between SAT and VAT FA composition was found (P &lt; 0.001 for CSE‐MRI, P = 0.001 for MRS). MRS and CSE‐MRI measurements of the FA composition were correlated with the GC‐MS results (for ndb: rMRS/GC‐MS = 0.83 P &lt; 0.001, rCSE‐MRI/GC‐MS = 0.84, P = 0.001; for nmidb: rMRS/GC‐MS = 0.74, P = 0.006, rCSE‐MRI/GC‐MS = 0.66, P = 0.020) Data Conclusion The follow‐up of liver PDFF, volume, and FA composition of AT during an overfeeding diet was demonstrated through different methods. The CSE‐MRI sequence associated with a dedicated postprocessing was found reliable for such quantification. Level of Evidence: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1587–1599.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30328237</pmid><doi>10.1002/jmri.26532</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4516-4565</orcidid><orcidid>https://orcid.org/0000-0002-6273-9498</orcidid><orcidid>https://orcid.org/0000-0002-4045-0503</orcidid><orcidid>https://orcid.org/0000-0002-3408-4156</orcidid><orcidid>https://orcid.org/0000-0002-0662-2172</orcidid><orcidid>https://orcid.org/0000-0001-8853-854X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2019-06, Vol.49 (6), p.1587-1599
issn 1053-1807
1522-2586
language eng
recordid cdi_hal_primary_oai_HAL_hal_01917470v1
source Wiley
subjects Adipose tissue
Bioengineering
Body weight
Chemical equilibrium
chemical shift‐encoded imaging
Coding
Composition
Correlation analysis
Correlation coefficient
Correlation coefficients
Dual energy X-ray absorptiometry
Endocrinology and metabolism
fatty acid composition
Fatty acids
Field strength
Gas chromatography
gas chromatography‐mass spectrometry
Human health and pathology
Imaging
in vivo
Life Sciences
Liver
Magnetic resonance imaging
Magnetic resonance spectroscopy
Mass spectrometry
Mass spectroscopy
MR spectroscopy
Organic chemistry
overfeeding
Overweight
Proton density (concentration)
Statistical analysis
Statistical methods
Statistical tests
Steam
Vertebrae
title 3D Chemical Shift‐Encoded MRI for Volume and Composition Quantification of Abdominal Adipose Tissue During an Overfeeding Protocol in Healthy Volunteers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Chemical%20Shift%E2%80%90Encoded%20MRI%20for%20Volume%20and%20Composition%20Quantification%20of%20Abdominal%20Adipose%20Tissue%20During%20an%20Overfeeding%20Protocol%20in%20Healthy%20Volunteers&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Nemeth,%20Angeline&rft.date=2019-06&rft.volume=49&rft.issue=6&rft.spage=1587&rft.epage=1599&rft.pages=1587-1599&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.26532&rft_dat=%3Cproquest_hal_p%3E2220575414%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4272-4d67eeb7907f94b33d81447dd749937b439ffc2b7f38c4bbdb0af477873524a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2220575414&rft_id=info:pmid/30328237&rfr_iscdi=true