Loading…
Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies
Mössbauer and Raman spectroscopies are used to identify for the first time a green rust as a mineral in a reductomorphic soil from samples extracted in the forest of Fougères (Brittany-France). The Mossbauer spectrum displays two characteristic ferrous and ferric quadrupole doublets, the abundance r...
Saved in:
Published in: | Geochimica et cosmochimica acta 1997-03, Vol.61 (5), p.1107-1111 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mössbauer and Raman spectroscopies are used to identify for the first time a green rust as a mineral in a reductomorphic soil from samples extracted in the forest of Fougères (Brittany-France). The Mossbauer spectrum displays two characteristic ferrous and ferric quadrupole doublets, the abundance ratio Fe(II)/Fe(Ill) of which is close to 1. Comparison with synthetic mixed valence Fe(II)Fe(HI) hydroxides supports the conclusion that the most probable formula is Fe2(OH)5, i.e., according to the pyroaurite-like crystal structure [Fe(n1Fe1III)(OH),]+o [OH] -. The microprobe Raman spectrum exhibits two bands at 518 and 427 cm-' as for synthetic green rusts. When exposed to the air, the new mineral goes rapidly from bluish-green to ochrous. The formula is compatible with the values of ionic activity products Q for equilibria between aqueous iron species and minerals obtained from soil waters, which suggests that this new mineral is likely to control the mobility of Fe in the environment. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/S0016-7037(96)00381-X |