Loading…
Geometry and topology of the space of Kähler metrics on singular varieties
Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results o...
Saved in:
Published in: | Compositio mathematica 2018-08, Vol.154 (8), p.1593-1632 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$Y$
be a compact Kähler normal space and let
$\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$
be a Kähler class. We study metric properties of the space
${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$
of Kähler metrics in
$\unicode[STIX]{x1D6FC}$
using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on
$\mathbb{Q}$
-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X18007170 |