Loading…
Free Heyting Algebra Endomorphisms: Ruitenburg's Theorem and Beyond
Ruitenburg's Theorem says that every endomorphism f of a finitely generated free Heyting algebra is ultimately periodic if f fixes all the generators but one. More precisely, there is N ≥ 0 such that f N +2 = f N , thus the period equals 2. We give a semantic proof of this theorem, using dualit...
Saved in:
Published in: | Mathematical structures in computer science 2019 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ruitenburg's Theorem says that every endomorphism f of a finitely generated free Heyting algebra is ultimately periodic if f fixes all the generators but one. More precisely, there is N ≥ 0 such that f N +2 = f N , thus the period equals 2. We give a semantic proof of this theorem, using duality techniques and bounded bisimulation ranks. By the same techniques, we tackle investigation of arbitrary endomorphisms between free algebras. We show that they are not, in general, ultimately periodic. Yet, when they are (e.g. in the case of locally finite subvarieties), the period can be explicitly bounded as function of the cardinality of the set of generators. |
---|---|
ISSN: | 0960-1295 1469-8072 |