Loading…
Cylindrical estimates for mean curvature flow of hypersurfaces in CROSSes
We consider the mean curvature flow of a closed hypersurface in the complex or quaternionic projective space. Under a suitable pinching assumption on the initial data, we prove apriori estimates on the principal curvatures which imply that the asymptotic profile near a singularity is either strictly...
Saved in:
Published in: | Annals of global analysis and geometry 2017-03, Vol.51 (2), p.179-188 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the mean curvature flow of a closed hypersurface in the complex or quaternionic projective space. Under a suitable pinching assumption on the initial data, we prove apriori estimates on the principal curvatures which imply that the asymptotic profile near a singularity is either strictly convex or cylindrical. This result generalizes to a large class of symmetric ambient spaces the estimates obtained in the previous works on the mean curvature flow of hypersurfaces in Euclidean space and in the sphere. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-016-9530-4 |