Loading…
Weak Solutions for Navier–Stokes Equations with Initial Data in Weighted $$L^2$$ Spaces
We show the existence of global weak solutions of the 3D Navier-Stokes equations with initial velocity in the weighted spaces L 2 wγ , where w γ (x) = (1 + |x|) −γ and 0 < γ ≤ 2, using new energy controls. As application we give a new proof of the existence of global weak discretely self-similar...
Saved in:
Published in: | Archive for rational mechanics and analysis 2020-07, Vol.237 (1), p.347-382 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show the existence of global weak solutions of the 3D Navier-Stokes equations with initial velocity in the weighted spaces L 2 wγ , where w γ (x) = (1 + |x|) −γ and 0 < γ ≤ 2, using new energy controls. As application we give a new proof of the existence of global weak discretely self-similar solutions of the 3D Navier-Stokes equations for discretely self-similar initial velocities which are locally square inte-grable. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-020-01510-w |