Loading…

Molecular phylogeny of the genus Bolusiella (Orchidaceae, Angraecinae)

Recent molecular studies have suggested the monophyly of Bolusiella, a small orchid genus comprising five species and one subspecies from Continental Africa, but sampling has been limited. Using the species delimitation presented in the recent taxonomic revision of the genus, this study aimed to con...

Full description

Saved in:
Bibliographic Details
Published in:Plant systematics and evolution 2018-02, Vol.304 (2), p.269-279
Main Authors: Verlynde, Simon, D'Haese, Cyrille A., Plunkett, Gregory M., Simo-Droissart, Murielle, Edwards, Molly, Droissart, Vincent, Stévart, Tariq
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent molecular studies have suggested the monophyly of Bolusiella, a small orchid genus comprising five species and one subspecies from Continental Africa, but sampling has been limited. Using the species delimitation presented in the recent taxonomic revision of the genus, this study aimed to confirm the monophyly of Bolusiella and assess the interspecific relationships using a comprehensive sampling and various analytical methods. DNA sequences of one nuclear spacer region (ITS-1) and five plastid regions (matK, rps16, trnL-trnF, trnC-petN, and ycf1) from 20 specimens representing all five species of the genus were analyzed using static homology, dynamic homology, and Bayesian methods. The monophyly of both the genus Bolusiella and each of its five species was confirmed, corroborating the previously published taxonomic revision. The use of dynamic homology methods was not conclusive for this particular group. The results of the total evidence analysis (combining all six sequence regions) using the dynamic homology approach yielded a slightly different hypothesis regarding interspecific relationships (namely the exchange of B. talbotii and Bolusiella iridifolia as the earliest diverging lineage), probably because the nodes in question are supported by a small subset of conflicting characters, compared to the hypotheses resulting from the static homology and Bayesian methods, which are congruent with the results of previous studies.
ISSN:0378-2697
1615-6110
2199-6881
DOI:10.1007/s00606-017-1474-z