Loading…

Observation of the algebraic localization-delocalization transition in a 1D disordered potential with a bias force

In a one-dimensional (1D) disordered potential, quantum interferences leading to Anderson lo-calization are ubiquitous, such that all wave-functions are exponentially localized. Moreover, no phase transition toward delocalization is expected in 1D. This behavior is strongly modified in the presence...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2020, Vol.2
Main Authors: Berthet, G., Lavoine, L., Parit, M. K., Brolis, A., Boissé, A., Bourdel, T.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In a one-dimensional (1D) disordered potential, quantum interferences leading to Anderson lo-calization are ubiquitous, such that all wave-functions are exponentially localized. Moreover, no phase transition toward delocalization is expected in 1D. This behavior is strongly modified in the presence of a bias force. We experimentally study this case, launching a non-interacting 39 K Bose-Einstein condensate in a 1D disordered potential induced by a far-off-resonance laser speckle, while controlling a bias force. In agreement with theoretical predictions, we observe a transition between algebraic localization and delocalization as a function of our control parameter that is the relative strength of the disorder against the bias force. We also demonstrate that the initial velocity of the wave-packet only plays a role through an effective disorder strength due to the correlation of the disorder. Adding a bias force is a quite natural way to probe the transport properties of quantum systems, a subject of broad interest that can be in particular addressed with atomic quantum gases thanks to their high degree of control and versatility [1]. For example, Bloch oscillations has been measured through the addition of a constant force to atoms in periodic potential induced by an optical lattice [2]. A force applied to a harmonic trap is equivalent to a trap displacement. The response to such a displacement permits to reveal the fluid or insulating behavior of atomic systems. In 1D interacting Bose gases, the pinning transition by an optical lattice [3] or the insulating transition in quasi-disordered optical lattice [4, 5] have been studied in this manner. More recently, transport in quantum gases is also studied in junction-type setup more analogous to condensed-matter systems: two reservoirs with different chemical potentials are connected through a constriction. For example, in a gas of fermions, the quantization of conductance through a quantum point contact [6] and the superfluid to normal transition in a disordered thin film have been observed [7]. In our work, we focus on the transport of non-interacting particles in disordered media. Without a bias force, quantum interferences between multiple paths lead to Anderson localization [8] whose signature is an exponential decay in space of single particle wave-function [9]. This phenomenon is ubiquitous in wave/quantum physics and it has been observed in many physical contexts [10] including condensed-matter [11] an
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.013386