Loading…
Quantification of non-stoichiometry in YAG ceramics using laser-induced breakdown spectroscopy
Strict control of composition is of paramount importance for the reproducible fabrication of advanced ceramics. In particular, the preparation of high-grade transparent ceramics of definite line-compounds requires that the ratio of major constitutive elements be quantified with a precision better th...
Saved in:
Published in: | Optical materials express 2017-02, Vol.7 (2), p.627-632 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Strict control of composition is of paramount importance for the reproducible fabrication of advanced ceramics. In particular, the preparation of high-grade transparent ceramics of definite line-compounds requires that the ratio of major constitutive elements be quantified with a precision better than a fraction of a mole percent to prevent the precipitation of secondary phases and the scattering of light. Such a requirement poses difficult challenges to most analytical methods, especially when applied to nearly-stoichiometric insulating phases. In this work, we show that laser-induced breakdown spectroscopy (LIBS) is a well-suited technique for the assessment of non-stoichiometry in yttrium aluminum garnet (YAG) ceramics and that the aluminum to yttrium ratio can be determined with a resolution of 0.3 mol %, well within the phase boundaries of YAG. |
---|---|
ISSN: | 2159-3930 2159-3930 |
DOI: | 10.1364/OME.7.000627 |