Loading…

Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope

•First demonstration of magnetic displacement in TEM.•Complete analytical model for a MEMS silicon beam.•Model validated through static and dynamic experiments. Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential...

Full description

Saved in:
Bibliographic Details
Published in:Ultramicroscopy 2019-02, Vol.197, p.100-104
Main Authors: Lobato-Dauzier, Nicolas, Denoual, Matthieu, Sato, Takaaki, Tachikawa, Saeko, Jalabert, Laurent, Fujita, Hiroyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3
cites cdi_FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3
container_end_page 104
container_issue
container_start_page 100
container_title Ultramicroscopy
container_volume 197
creator Lobato-Dauzier, Nicolas
Denoual, Matthieu
Sato, Takaaki
Tachikawa, Saeko
Jalabert, Laurent
Fujita, Hiroyuki
description •First demonstration of magnetic displacement in TEM.•Complete analytical model for a MEMS silicon beam.•Model validated through static and dynamic experiments. Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential for atomic resolution imaging of specimen while applying stress for mechanical testing. This paper introduces a novel actuation principle for the MEMS device in TEM relying on the internal magnetic field of the TEM and current flow through the device. The actuation principle is experimentally demonstrated in TEM and entirely modeled in the case of a silicon beam. The model is validated through static and dynamic experimental studies. The thermal side-effect of current flow is taken into account. The major advantages of the proposed magnetic actuation principle are the bidirectional control of the displacement of the device, the intrinsic linear displacement of the device with applied current and the potential milliNewton (mN) range force generation.
doi_str_mv 10.1016/j.ultramic.2018.12.002
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02335205v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030439911830305X</els_id><sourcerecordid>2159989169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3</originalsourceid><addsrcrecordid>eNqFkUtv3CAUhVHVqJmm_QuRl-3CzgWMgV2jUdpUmiiLtNsiwNctIz-mYI-Ufx-sSbLNCnT03dc5hFxSqCjQ5mpfLf0c7RB8xYCqirIKgL0jG6qkLplk_D3ZAIe65FrTc_IxpT0AUKjVB3LOQWQCYEP-bJcYcZyLNoYjjsVg_444B19YPy92DtNYTF1hi7ubu4cihT74rDi0QxHGLOcVxjSElFYQe_RzzJ-8VZySnw74iZx1tk_4-fm9IL-_3_za3pa7-x8_t9e70tfA5lLWnLWuBadQsK6Tsqu1cKAa9Ewx7agCyiUqplonOqZBNkI0TtKu8dJJxy_I11Pff7Y3hxgGGx_NZIO5vd6ZVQPGuWAgjjSzX07sIU7_F0yzyQd47Hs74rQkw6jQWmna6Iw2J3S9J0XsXntTMGsOZm9ecjBrDoYyk3PIhZfPMxY3YPta9mJ8Br6dAMyuHANGk3zA0WMbYnbRtFN4a8YTf_ab7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159989169</pqid></control><display><type>article</type><title>Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope</title><source>Elsevier</source><creator>Lobato-Dauzier, Nicolas ; Denoual, Matthieu ; Sato, Takaaki ; Tachikawa, Saeko ; Jalabert, Laurent ; Fujita, Hiroyuki</creator><creatorcontrib>Lobato-Dauzier, Nicolas ; Denoual, Matthieu ; Sato, Takaaki ; Tachikawa, Saeko ; Jalabert, Laurent ; Fujita, Hiroyuki</creatorcontrib><description>•First demonstration of magnetic displacement in TEM.•Complete analytical model for a MEMS silicon beam.•Model validated through static and dynamic experiments. Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential for atomic resolution imaging of specimen while applying stress for mechanical testing. This paper introduces a novel actuation principle for the MEMS device in TEM relying on the internal magnetic field of the TEM and current flow through the device. The actuation principle is experimentally demonstrated in TEM and entirely modeled in the case of a silicon beam. The model is validated through static and dynamic experimental studies. The thermal side-effect of current flow is taken into account. The major advantages of the proposed magnetic actuation principle are the bidirectional control of the displacement of the device, the intrinsic linear displacement of the device with applied current and the potential milliNewton (mN) range force generation.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2018.12.002</identifier><identifier>PMID: 30572300</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Electronics ; Engineering Sciences</subject><ispartof>Ultramicroscopy, 2019-02, Vol.197, p.100-104</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3</citedby><cites>FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3</cites><orcidid>0000-0001-5295-9182 ; 0000-0002-3752-0072 ; 0000-0002-6845-3554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30572300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02335205$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobato-Dauzier, Nicolas</creatorcontrib><creatorcontrib>Denoual, Matthieu</creatorcontrib><creatorcontrib>Sato, Takaaki</creatorcontrib><creatorcontrib>Tachikawa, Saeko</creatorcontrib><creatorcontrib>Jalabert, Laurent</creatorcontrib><creatorcontrib>Fujita, Hiroyuki</creatorcontrib><title>Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>•First demonstration of magnetic displacement in TEM.•Complete analytical model for a MEMS silicon beam.•Model validated through static and dynamic experiments. Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential for atomic resolution imaging of specimen while applying stress for mechanical testing. This paper introduces a novel actuation principle for the MEMS device in TEM relying on the internal magnetic field of the TEM and current flow through the device. The actuation principle is experimentally demonstrated in TEM and entirely modeled in the case of a silicon beam. The model is validated through static and dynamic experimental studies. The thermal side-effect of current flow is taken into account. The major advantages of the proposed magnetic actuation principle are the bidirectional control of the displacement of the device, the intrinsic linear displacement of the device with applied current and the potential milliNewton (mN) range force generation.</description><subject>Electronics</subject><subject>Engineering Sciences</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv3CAUhVHVqJmm_QuRl-3CzgWMgV2jUdpUmiiLtNsiwNctIz-mYI-Ufx-sSbLNCnT03dc5hFxSqCjQ5mpfLf0c7RB8xYCqirIKgL0jG6qkLplk_D3ZAIe65FrTc_IxpT0AUKjVB3LOQWQCYEP-bJcYcZyLNoYjjsVg_444B19YPy92DtNYTF1hi7ubu4cihT74rDi0QxHGLOcVxjSElFYQe_RzzJ-8VZySnw74iZx1tk_4-fm9IL-_3_za3pa7-x8_t9e70tfA5lLWnLWuBadQsK6Tsqu1cKAa9Ewx7agCyiUqplonOqZBNkI0TtKu8dJJxy_I11Pff7Y3hxgGGx_NZIO5vd6ZVQPGuWAgjjSzX07sIU7_F0yzyQd47Hs74rQkw6jQWmna6Iw2J3S9J0XsXntTMGsOZm9ecjBrDoYyk3PIhZfPMxY3YPta9mJ8Br6dAMyuHANGk3zA0WMbYnbRtFN4a8YTf_ab7A</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Lobato-Dauzier, Nicolas</creator><creator>Denoual, Matthieu</creator><creator>Sato, Takaaki</creator><creator>Tachikawa, Saeko</creator><creator>Jalabert, Laurent</creator><creator>Fujita, Hiroyuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5295-9182</orcidid><orcidid>https://orcid.org/0000-0002-3752-0072</orcidid><orcidid>https://orcid.org/0000-0002-6845-3554</orcidid></search><sort><creationdate>20190201</creationdate><title>Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope</title><author>Lobato-Dauzier, Nicolas ; Denoual, Matthieu ; Sato, Takaaki ; Tachikawa, Saeko ; Jalabert, Laurent ; Fujita, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electronics</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobato-Dauzier, Nicolas</creatorcontrib><creatorcontrib>Denoual, Matthieu</creatorcontrib><creatorcontrib>Sato, Takaaki</creatorcontrib><creatorcontrib>Tachikawa, Saeko</creatorcontrib><creatorcontrib>Jalabert, Laurent</creatorcontrib><creatorcontrib>Fujita, Hiroyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobato-Dauzier, Nicolas</au><au>Denoual, Matthieu</au><au>Sato, Takaaki</au><au>Tachikawa, Saeko</au><au>Jalabert, Laurent</au><au>Fujita, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>197</volume><spage>100</spage><epage>104</epage><pages>100-104</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>•First demonstration of magnetic displacement in TEM.•Complete analytical model for a MEMS silicon beam.•Model validated through static and dynamic experiments. Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential for atomic resolution imaging of specimen while applying stress for mechanical testing. This paper introduces a novel actuation principle for the MEMS device in TEM relying on the internal magnetic field of the TEM and current flow through the device. The actuation principle is experimentally demonstrated in TEM and entirely modeled in the case of a silicon beam. The model is validated through static and dynamic experimental studies. The thermal side-effect of current flow is taken into account. The major advantages of the proposed magnetic actuation principle are the bidirectional control of the displacement of the device, the intrinsic linear displacement of the device with applied current and the potential milliNewton (mN) range force generation.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30572300</pmid><doi>10.1016/j.ultramic.2018.12.002</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5295-9182</orcidid><orcidid>https://orcid.org/0000-0002-3752-0072</orcidid><orcidid>https://orcid.org/0000-0002-6845-3554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2019-02, Vol.197, p.100-104
issn 0304-3991
1879-2723
language eng
recordid cdi_hal_primary_oai_HAL_hal_02335205v1
source Elsevier
subjects Electronics
Engineering Sciences
title Current driven magnetic actuation of a MEMS silicon beam in a transmission electron microscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20driven%20magnetic%20actuation%20of%20a%20MEMS%20silicon%20beam%20in%20a%20transmission%20electron%20microscope&rft.jtitle=Ultramicroscopy&rft.au=Lobato-Dauzier,%20Nicolas&rft.date=2019-02-01&rft.volume=197&rft.spage=100&rft.epage=104&rft.pages=100-104&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2018.12.002&rft_dat=%3Cproquest_hal_p%3E2159989169%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-7432dbd0b8e52ff77f495b086ec2829b180137e828db5f29076556b71f6c7b7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159989169&rft_id=info:pmid/30572300&rfr_iscdi=true