Loading…

On the bit-complexity of sparse polynomial and series multiplication

In this paper we present various algorithms for multiplying multivariate polynomials and series. All algorithms have been implemented in the C++ libraries of the Mathemagix system. We describe naive and softly optimal variants for various types of coefficients and supports and compare their relative...

Full description

Saved in:
Bibliographic Details
Published in:Journal of symbolic computation 2013-03, Vol.50, p.227-254
Main Authors: van der Hoeven, Joris, Lecerf, Grégoire
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we present various algorithms for multiplying multivariate polynomials and series. All algorithms have been implemented in the C++ libraries of the Mathemagix system. We describe naive and softly optimal variants for various types of coefficients and supports and compare their relative performances. For the first time, under the assumption that a tight superset of the support of the product is known, we are able to observe the benefit of asymptotically fast arithmetic for sparse multivariate polynomials and power series, which might lead to speed-ups in several areas of symbolic and numeric computation. For the sparse representation, we present new softly linear algorithms for the product whenever the destination support is known, together with a detailed bit-complexity analysis for the usual coefficient types. As an application, we are able to count the number of the absolutely irreducible factors of a multivariate polynomial with a cost that is essentially quadratic in the number of the integral points in the convex hull of the support of the given polynomial. We report on examples that were previously out of reach.
ISSN:0747-7171
1095-855X
DOI:10.1016/j.jsc.2012.06.004