Loading…
The first polynomial self-stabilizing 1-maximal matching algorithm for general graphs
We present the first polynomial self-stabilizing algorithm for finding a 1-maximal matching in a general graph. The previous best known algorithm has been presented by Manne et al. [20] and we show in this paper it has a sub-exponential time complexity under the distributed adversarial daemon. Our n...
Saved in:
Published in: | Theoretical computer science 2019-08, Vol.782, p.54-78 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present the first polynomial self-stabilizing algorithm for finding a 1-maximal matching in a general graph. The previous best known algorithm has been presented by Manne et al. [20] and we show in this paper it has a sub-exponential time complexity under the distributed adversarial daemon. Our new algorithm is an adaptation of the Manne et al. algorithm and works under the same daemon, but with a complexity in O(m×n2) moves, with n is the number of nodes and m is the number of edges. This is the first self-stabilizing algorithm that solve this problem with a polynomial complexity. Moreover, our algorithm only needs one more boolean variable than the previous one. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2019.02.031 |