Loading…

6D interaction control with aerial robots: The flying end-effector paradigm

This paper presents a novel paradigm for physical interactive tasks in aerial robotics allowing reliability to be increased and weight and costs to be reduced compared with state-of-the-art approaches. By exploiting its tilted propeller actuation, the robot is able to control the full 6D pose (posit...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of robotics research 2019-08, Vol.38 (9), p.1045-1062
Main Authors: Ryll, Markus, Muscio, Giuseppe, Pierri, Francesco, Cataldi, Elisabetta, Antonelli, Gianluca, Caccavale, Fabrizio, Bicego, Davide, Franchi, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a novel paradigm for physical interactive tasks in aerial robotics allowing reliability to be increased and weight and costs to be reduced compared with state-of-the-art approaches. By exploiting its tilted propeller actuation, the robot is able to control the full 6D pose (position and orientation independently) and to exert a full-wrench (force and torque independently) with a rigidly attached end-effector. Interaction is achieved by means of an admittance control scheme in which an outer loop control governs the desired admittance behavior (i.e., interaction compliance/stiffness, damping, and mass) and an inner loop based on inverse dynamics ensures full 6D pose tracking. The interaction forces are estimated by an inertial measurement unit (IMU)-enhanced momentum-based observer. An extensive experimental campaign is performed and four case studies are reported: a hard touch and slide on a wooden surface, called the sliding surface task; a tilted peg-in-hole task, i.e., the insertion of the end-effector in a tilted funnel; an admittance shaping experiment in which it is shown how the stiffness, damping, and apparent mass can be modulated at will; and, finally, the fourth experiment is to show the effectiveness of the approach also in the presence of time-varying interaction forces.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364919856694