Loading…

Electrotransfer of CpG free plasmids enhances gene expression in skin

Skin is a very suitable target for gene therapy and DNA vaccination due to its accessibility, its surface and its ability to produce transgenes. Gene electrotransfer (GET) to the skin is under development for clinical applications for DNA vaccine or local treatment such as wound healing. Local treat...

Full description

Saved in:
Bibliographic Details
Published in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2019-12, Vol.130, p.107343-107343, Article 107343
Main Authors: Chabot, S, Bellard, E, Reynes, J P, Tiraby, G, Teissie, J, Golzio, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skin is a very suitable target for gene therapy and DNA vaccination due to its accessibility, its surface and its ability to produce transgenes. Gene electrotransfer (GET) to the skin is under development for clinical applications for DNA vaccine or local treatment such as wound healing. Local treatments are effective if the expression of the plasmid affects only the local environment (skin) by inducing an efficient concentration over a prolonged period. In this study, we evaluate the control of expression in the skin of a plasmid coding a fluorescent protein by its CpG (cytosine-phosphate-guanine motif) content. Two fluorescent reporter genes are evaluated: tdTomato and GFP. The expression is followed on the long term by in vivo fluorescence imaging. Our results show that GET mediated expression in the skin can be controlled by the CpG content of the plasmid. Long term expression (>120 days) can be obtained at high level with CpG-free constructs associated with a proper design of the electrodes where the field distribution mediating the gene electrotransfer is present deep in the skin.
ISSN:1567-5394
1878-562X
DOI:10.1016/j.bioelechem.2019.107343