Loading…
Iron Isotope Fractionation during Bio- and Photodegradation of Organoferric Colloids in Boreal Humic Waters
Biodegradation and photolysis of dissolved organic matter (DOM) in boreal high-latitude waters are the two main factors controlling not only the aquatic fluxes and residence time of carbon but also metal nutrients associated with DOM such as Fe. The DOM is usually present in the form of organic and...
Saved in:
Published in: | Environmental science & technology 2019-10, Vol.53 (19), p.11183-11194 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biodegradation and photolysis of dissolved organic matter (DOM) in boreal high-latitude waters are the two main factors controlling not only the aquatic fluxes and residence time of carbon but also metal nutrients associated with DOM such as Fe. The DOM is usually present in the form of organic and organomineral colloids, which also account for the majority of dissolved Fe. Here, we use the stable Fe isotope approach to unravel the processes controlling Fe behavior during bio- and photodegradation of colloids in boreal Fe- and DOM-rich humic waters (a stream and a fen). The adsorption of Fe colloids onto heterotrophic bacteria Pseudomonas aureofaciens produced enrichment in +0.4‰ (δ57Fe) in the heavier isotopes of the cell surface relative to the remaining solution. In contrast, long-term assimilation of Fe by live cells yielded preferential incorporation of lighter isotopes into the cells (−0.7‰ relative to aqueous solution). The sunlight-induced oxidation of Fe(II) in fen water led to the removal of heavier Fe isotopes (+1.5 to +2.5‰) from solution, consistent with Fe(III) hydroxide precipitation from Fe(II)-bearing solution. Altogether, bio- and photodegradation of organoferric colloids, occurring within a few days of exposure time, can produce several per mil isotopic excursions in shallow lentic and lothic inland waters of high-latitude boreal regions. Considerable daily scale variations of Fe isotopic composition should therefore be taken into account during the interpretation of the riverine flux of Fe isotopes to the ocean or tracing weathering processes using Fe isotopes in surface waters at high latitudes. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.9b02797 |