Loading…
First- and Second-Order Moments of the Normalized Sample Covariance Matrix of Spherically Invariant Random Vectors
Under Gaussian assumptions, the sample covariance matrix (SCM) is encountered in many covariance based processing algorithms. In case of impulsive noise, this estimate is no more appropriate. This is the reason why when the noise is modeled by spherically invariant random vectors (SIRV), a natural e...
Saved in:
Published in: | IEEE signal processing letters 2007-06, Vol.14 (6), p.425-428 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Under Gaussian assumptions, the sample covariance matrix (SCM) is encountered in many covariance based processing algorithms. In case of impulsive noise, this estimate is no more appropriate. This is the reason why when the noise is modeled by spherically invariant random vectors (SIRV), a natural extension of the SCM is extensively used in the literature: the well-known normalized sample covariance matrix (NSCM), which estimates the covariance of SIRV. Indeed, this estimate gets rid of a fluctuating noise power and is widely used in radar applications. The aim of this paper is to derive closed-form expressions of the first- and second-order moments of the NSCM |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2006.888400 |