Loading…
Optimal regularity for all time for entropy solutions of conservation laws in $$BV^s
This paper deals with the optimal regularity for entropy solutions of conservation laws. For this purpose, we use two key ingredients: (a) fine structure of entropy solutions and (b) fractional BV spaces. We show that optimality of the regularizing effect for the initial value problem from $L^\infty...
Saved in:
Published in: | Nonlinear differential equations and applications 2020-10, Vol.27 (5), Article 46 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the optimal regularity for entropy solutions of conservation laws. For this purpose, we use two key ingredients: (a) fine structure of entropy solutions and (b) fractional BV spaces. We show that optimality of the regularizing effect for the initial value problem from $L^\infty$ to fractional Sobolev space and fractional BV spaces is valid for all time. Previously, such optimality was proven only for a finite time, before the nonlinear interaction of waves. Here for some well-chosen examples, the sharp regularity is obtained after the interaction of waves. Moreover , we prove sharp smoothing in $BV^s$ for a convex scalar conservation law with a linear source term. Next, we provide an upper bound of the maximal smoothing effect for nonlinear scalar multi-dimensional conservation laws and some hyperbolic systems in one or multi-dimension. |
---|---|
ISSN: | 1021-9722 1420-9004 |
DOI: | 10.1007/s00030-020-00649-5 |