Loading…
Bio-protective effects of homologous disaccharides on biological macromolecules
In this contribution the effects of the homologous disaccharides trehalose and sucrose on both water and hydrated lysozyme dynamics are considered by determining the mean square displacement (MSD) from elastic incoherent neutron scattering (EINS) experiments. The self-distribution function (SDF) pro...
Saved in:
Published in: | European biophysics journal 2012-04, Vol.41 (4), p.361-367 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this contribution the effects of the homologous disaccharides trehalose and sucrose on both water and hydrated lysozyme dynamics are considered by determining the mean square displacement (MSD) from elastic incoherent neutron scattering (EINS) experiments. The self-distribution function (SDF) procedure is applied to the data collected, by use of IN13 and IN10 spectrometers (Institute Laue Langevin, France), on trehalose and sucrose aqueous mixtures (at a concentration corresponding to 19 water molecules per disaccharide molecule), and on dry and hydrated (H
2
O and D
2
O) lysozyme also in the presence of the disaccharides. As a result, above the glass transition temperature of water, the MSD of the water–trehalose system is lower than that of the water–sucrose system. This result suggests that the hydrogen-bond network of the water–trehalose system is stronger than that of the water–sucrose system. Furthermore, by taking into account instrumental resolution effects it was found that the system relaxation time of the water–trehalose system is longer than that of the water–sucrose system, and the system relaxation time of the protein in a hydrated environment in the presence of disaccharides increases sensitively. These results explain the higher bioprotectant effectiveness of trehalose. Finally, the partial MSDs of sucrose/water and trehalose/water have been evaluated. It clearly emerges from the analysis that these are almost equivalent in the low-
Q
domain (0–1.7 Å
−1
) but differ substantially in the high-
Q
range (1.7–4 Å
−1
). These findings reveal that the lower structural sensitivity of trehalose to thermal changes is connected with the local spatial scale. |
---|---|
ISSN: | 0175-7571 1432-1017 |
DOI: | 10.1007/s00249-011-0760-x |