Loading…
A permutation test based on the restricted mean survival time for comparison of net survival distributions in non-proportional excess hazard settings
Net survival is used in epidemiological studies to assess excess mortality due to a given disease when causes of death are unreliable. By correcting for the general population mortality, it allows comparisons between regions or periods and thus evaluation of health policies. The Pohar-Perme non-para...
Saved in:
Published in: | Statistical methods in medical research 2020-06, Vol.29 (6), p.1612-1623 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Net survival is used in epidemiological studies to assess excess mortality due to a given disease when causes of death are unreliable. By correcting for the general population mortality, it allows comparisons between regions or periods and thus evaluation of health policies. The Pohar-Perme non-parametric estimator of net survival has been recently proposed, soon followed by an appropriate log-rank-type test. However, log-rank tests are known to be under-optimal in non-proportional settings (e.g. crossing of the hazard functions). In classical survival analysis, one solution is to compare the restricted mean survival times. A difference in restricted mean survival time represents a life benefit or loss over the studied period. In the present article the restricted mean net survival time was used to derive a specific test statistic to compare net survivals in proportional and non-proportional hazards settings. The new test was generalized to more than two groups and to stratified analysis. The test performance was assessed on simulation study, compared to the log-rank-type test, and its use illustrated on a population-based colorectal cancer registry. The new test for net survival comparisons proved robust to non-proportionality and well-performing in proportional hazards situations. Furthermore, it is also suited to the classical survival framework. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280219870217 |