Loading…
Complex heterochrony underlies the evolution of Caenorhabditis elegans hermaphrodite sex allocation
Hermaphroditic organisms are key models in sex allocation research, yet the developmental processes by which hermaphrodite sex allocation can evolve remain largely unknown. Here we use experimental evolution of hermaphrodite-male (androdioecious) Caenorhabditis elegans populations to quantify the de...
Saved in:
Published in: | Evolution 2016-10, Vol.70 (10), p.2357-2369 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hermaphroditic organisms are key models in sex allocation research, yet the developmental processes by which hermaphrodite sex allocation can evolve remain largely unknown. Here we use experimental evolution of hermaphrodite-male (androdioecious) Caenorhabditis elegans populations to quantify the developmental changes underlying adaptive shifts in hermaphrodite sex allocation. We show that the experimental evolution of increased early-life self-fertility occurred through modification of a suite of developmental traits: increased self-sperm production, accelerated oogénesis and ovulation, and increased embryo retention. The experimental evolution of increased self-sperm production delayed entry into oogenesis—as expected, given the sequentially coupled production of self-spermatogenesis and oogenesis. Surprisingly, however, delayed oogénesis onset did not delay reproductive maturity, nor did it trade-off with gamete or embryo size. Comparing developmental time dynamics of germline and soma indicates that the evolution of increased sperm production did not delay reproductive maturity due to a globally accelerated larval development during the period of self-spermatogenesis. Overall, heterochrony in gametogenesis and soma can explain adaptive shifts in hermaphrodite sex allocation. |
---|---|
ISSN: | 0014-3820 1558-5646 |
DOI: | 10.1111/evo.13032 |