Loading…
Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea–barley intercrops given different soil nitrogen supplies
Competition for soil resources plays a key role in the outcome of intercropping systems. In cereal–legume intercrops, competition for soil nitrogen during the vegetative phase greatly influences the final performance of the intercropped species. However, there is a lack of knowledge on the main fact...
Saved in:
Published in: | Field crops research 2007, Vol.103 (1), p.76-85 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Competition for soil resources plays a key role in the outcome of intercropping systems. In cereal–legume intercrops, competition for soil nitrogen during the vegetative phase greatly influences the final performance of the intercropped species. However, there is a lack of knowledge on the main factors involved in interspecific soil N competitive interactions between species. The dominance of cereals over legumes is often attributed to their faster growing rooting system. Nevertheless, using only field experimental approaches makes it difficult to isolate the effect of one factor because of the strong interactions between processes and the environment. Given the complexity of intercropping systems, dynamic simulation models can be especially helpful for testing hypotheses about the key factors driving competition between species. The present work was designed to investigate, under non-limiting water conditions, through an experimental and modelling approach, whether differences in root depth penetration among pea and barley grown together determined competition for soil N and dry matter accumulation (DM) by each species during the vegetative phase. This hypothesis was tested through several simulated scenarios generated using the STICS crop model. The model was first used to compare competition for soil N according to differences in root depth penetration rates between species. This rooting depth penetration effect was then studied at three levels of soil N supply leading to different degrees of N demand and N stress. A field experiment carried out in 2003 including pea–barley intercrops grown either with 130
kg
N
ha
−1 or without any fertilizer was used to test the model. Experimental results of aboveground biomass, nitrogen accumulation, N
2 fixation and rooting depth monitored regularly during the crop cycle were compared to simulated results. The simulated responses of the intercrops were in agreement with the observations from the experimental dataset. Using the model, it is clear that faster root growth in barley gives it access to more soil nitrogen than pea during the vegetative phase. However, this advantage, which is limited to the vegetative phase, only affects the outcome of the intercrop when soil N supply is low. With higher soil N supplies, soil N sharing is not affected by the differences in rooting depth penetration between species. It appears that with higher N supplies, the differences in N demand between species have more influence on s |
---|---|
ISSN: | 0378-4290 1872-6852 |
DOI: | 10.1016/j.fcr.2007.04.008 |