Loading…

The Insulin-like Growth Factor System: a Key Determinant Role in the Growth and Selection of Ovarian Follicles? A Comparative Species Study

Contents The aim of the present paper is to make a comparative study of the expression of the elements of the insulin‐like growth factor (IGF) system in different mammalian species and thus illuminate their potential role in the process of ovarian folliculogenesis in mammals. In most mammalian speci...

Full description

Saved in:
Bibliographic Details
Published in:Reproduction in domestic animals 2003-08, Vol.38 (4), p.247-258
Main Authors: Mazerbourg, S, Bondy, CA, Zhou, J, Monget, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Contents The aim of the present paper is to make a comparative study of the expression of the elements of the insulin‐like growth factor (IGF) system in different mammalian species and thus illuminate their potential role in the process of ovarian folliculogenesis in mammals. In most mammalian species, IGFs and IGFBPs (in particular IGFBP‐2 and IGFBP‐4) are considered, respectively, as stimulators and inhibitors of follicular growth and maturation. In mammalian species, IGFs might play a key role in sensitizing ovarian granulosa cells to FSH action during terminal follicular growth. Concentrations of IGFBP‐2 and IGFBP‐4 in follicular fluid strongly decrease and increase during follicular growth and atresia, respectively, leading to an increase and a decrease in IGF bioavailability, respectively. The decrease in these IGFBPs is because of a decrease in mRNA expression (IGFBP‐2) and an increase in proteolytic degradation by PAPP‐A in follicular fluid (IGFBP‐2, IGFBP‐4 and IGFBP‐5), and likely participates in the selection of dominant follicles. In contrast, levels and/or sites of expression of IGF‐I, IGF‐II, IGFBP‐4, IGFBP‐5 and type II receptor in follicular cells strongly differ between mammalian species, suggesting that these phenomena might play species‐specific or secondary roles in ovarian folliculogenesis.
ISSN:0936-6768
1439-0531
DOI:10.1046/j.1439-0531.2003.00440.x