Loading…

Guanylyl cyclase C as a reliable immunohistochemical marker and its ligand Escherichia coli heat-stable enterotoxin as a potential protein-delivering vehicle for colorectal cancer cells

mRNA-based technologies and preclinical research in a variety of animal models have shown that guanylyl cyclase C (GCC) is a highly sensitive and specific molecular marker for the diagnosis of colorectal cancer (CRC). GCC is also a receptor for Escherichia coli ( E. coli) heat-stable enterotoxin (ST...

Full description

Saved in:
Bibliographic Details
Published in:European journal of cancer (1990) 2005-07, Vol.41 (11), p.1618-1627
Main Authors: Buc, E., Vartanian, M. Der, Darcha, C., DĂ©chelotte, P., Pezet, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:mRNA-based technologies and preclinical research in a variety of animal models have shown that guanylyl cyclase C (GCC) is a highly sensitive and specific molecular marker for the diagnosis of colorectal cancer (CRC). GCC is also a receptor for Escherichia coli ( E. coli) heat-stable enterotoxin (STa) and can be used for STa-directed delivery of small-sized imaging agents to human CRC tumours. In this study, we have evaluated GCC as a new immunohistochemical (IHC) marker for CRC tissues and STa as a suitable vector for delivering high-sized protein molecules to CRC cells. Firstly, we have developed a highly sensitive EnVision +-based IHC staining method for detecting GCC in serial paraffin-embedded sections of primary and metastatic CRC (38 cases) or non-CRC (14 cases) adenocarcinomas. Carcinoembryonic antigen (CEA) and cytokeratin 20 (CK20) were chosen as controls. Our results indicate that GCC staining was positive in 100% of CRC tumours and was comparable to CEA (95%) or CK20 (92%). In contrast to CEA and CK20, GCC was negative in all of the extra-intestinal non-CRC tumours examined. GCC appears to display higher specificity than either CEA or CK20 while retaining high sensitivity, suggesting that it is a better CRC marker than CEA or CK20. Secondly, STa was genetically coupled to green fluorescent protein (GFP) and the resulting GFP-tagged STa was characterized for expression in E. coli and enterotoxicity in mouse. The binding characteristics of GFP-STa in CRC Caco-2 cells were followed by immunofluorescence microscopy. In this work we show that GFP-tagged STa is biologically active and has retained its ability to internalise into Caco-2 cells making it a potential vehicle for the delivery of anticancer therapeutic protein agents.
ISSN:0959-8049
1879-0852
DOI:10.1016/j.ejca.2005.02.031