Loading…
Graph Reconstruction and Verification
How efficiently can we find an unknown graph using distance or shortest path queries between its vertices? We assume that the unknown graph G is connected, unweighted, and has bounded degree. In the reconstruction problem, the goal is to find the graph G. In the verification problem, we are given a...
Saved in:
Published in: | ACM transactions on algorithms 2018-10, Vol.14 (4), p.1-30, Article 40 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | How efficiently can we find an unknown graph using distance or shortest path queries between its vertices? We assume that the unknown graph G is connected, unweighted, and has bounded degree. In the reconstruction problem, the goal is to find the graph G. In the verification problem, we are given a hypothetical graph Ĝ and want to check whether G is equal to Ĝ. We provide a randomized algorithm for reconstruction using Õ(n3/2) distance queries, based on Voronoi cell decomposition. Next, we analyze natural greedy algorithms for reconstruction using a shortest path oracle and also for verification using either oracle, and show that their query complexity is n1+o(1). We further improve the query complexity when the graph is chordal or outerplanar. Finally, we show some lower bounds, and consider an approximate version of the reconstruction problem. |
---|---|
ISSN: | 1549-6325 1549-6333 |
DOI: | 10.1145/3199606 |