Loading…

Spontaneous insertion of plant plasma membrane (H+)ATPase into a preformed bilayer

The purified (H+)ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H(+)-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of membrane biology 1991-02, Vol.120 (1), p.51-58
Main Authors: Simon-Plas, F. (Institut National de la Recherche Agronomique, Montpellier, France), Venema, K, Grouzis, J.P, Gibrat, R, Rigaud, J, Grignon, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purified (H+)ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H(+)-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)ATPase molecules were closely associated with liposomes, exhibiting a high H(+)-pumping activity (150,000% quenching min-1.mg-1 protein of the probe 9-amino-6-chloro-2-methoxyacridine). The insertion was achieved within a few seconds. No latency of the (H+)ATPase hydrolytic activity was revealed when lysophosphatidylcholine was added to permeabilize the vesicles. This indicated that the (H+)ATPase molecules inserted unidirectionally, the catalytic sites being exposed outside the vesicles ("inside-out" orientation), and thus freely accessible to Mg-ATP. The nondelipidated (H+)ATPase could also functionally insert into bilayer from PC:PE:PG or PC:PE:PI, due to the presence of both hydrophobic defects promoted by PE, and negative phospholipids specifically required by the (H+)ATPase from corn roots. The detergent octylglucoside facilitated the delipidated (H+)ATPase reinsertion probably by promoting both a proper protein conformation and hydrophobic defects in the bilayer. Lysophosphatidylcholine facilitated the delipidated protein insertion only when hydrophobic defects were already present, and thus seemed only capable to ensure a proper protein conformation.
ISSN:0022-2631
1432-1424
DOI:10.1007/BF01868590