Loading…

Markov Random Geometric Graph (MRGG): A Growth Model for Temporal Dynamic Networks

We introduce Markov Random Geometric Graphs (MRGGs), a growth model for temporal dynamic networks. It is based on a Markovian latent space dynamic: consecutive latent points are sampled on the Euclidean Sphere using an unknown Markov kernel; and two nodes are connected with a probability depending o...

Full description

Saved in:
Bibliographic Details
Published in:Electronic journal of statistics 2022-01, Vol.16 (1), p.671-699
Main Authors: Duchemin, Quentin, de Castro, Yohann
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce Markov Random Geometric Graphs (MRGGs), a growth model for temporal dynamic networks. It is based on a Markovian latent space dynamic: consecutive latent points are sampled on the Euclidean Sphere using an unknown Markov kernel; and two nodes are connected with a probability depending on a unknown function of their latent geodesic distance. More precisely, at each stamp-time $k$ we add a latent point $X_k$ sampled by jumping from the previous one $X_{k-1}$ in a direction chosen uniformly $Y_k$ and with a length $r_k$ drawn from an unknown distribution called the latitude function. The connection probabilities between each pair of nodes are equal to the envelope function of the distance between these two latent points. We provide theoretical guarantees for the non-parametric estimation of the latitude and the envelope functions.We propose an efficient algorithm that achieves those non-parametric estimation tasks based on an ad-hoc Hierarchical Agglomerative Clustering approach. As a by product, we show how MRGGs can be used to detect dependence structure in growing graphs and to solve link prediction problems.
ISSN:1935-7524
1935-7524
DOI:10.1214/21-EJS1969