Loading…

Experimental Descriptors for the Synthesis of Multicationic Nickel Perovskite Nanoparticles for Oxygen Reduction

In many liquid-phase synthesis methods developed to produce nanomaterials, the key parameters governing the selective synthesis of solids and compounds are clearly identified, for example, heat treatment profile, precursors solubility, pH, and so on. Most of these well-understood approaches rely on...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2020-08, Vol.3 (8), p.7482-7489
Main Authors: Gonell, Francisco, Sánchez-Sánchez, Carlos M, Vivier, Vincent, Laberty-Robert, Christel, Portehault, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In many liquid-phase synthesis methods developed to produce nanomaterials, the key parameters governing the selective synthesis of solids and compounds are clearly identified, for example, heat treatment profile, precursors solubility, pH, and so on. Most of these well-understood approaches rely on relatively low temperature processes, below 400 °C, where conventional solvents are still stable. Interestingly, thermally stable inorganic molten salts enable to widen the temperature range for liquid-phase syntheses. They provide access to other families of crystalline solids requiring higher temperatures, as multicationic oxides. Nonetheless, the mechanisms that govern solid-state formation and phase selection when different compounds compete are poorly understood. Herein, we report how experimental parameters, such as temperature, time, reaction medium composition, and solvent oxo-basicity, enable to drive the synthesis mechanisms in molten salts toward nanoscaled multicationic oxides. We especially enlighten the phase-selective synthesis of pseudocubic perovskite LaNiO3 and layered Ruddlesden–Popper phases La2NiO4 and LaSrNiO4 at the nanoscale by suggesting that the oxidation state of the metallic precursor plays a key role in the reaction pathway. This allows designing electrocatalysts for the oxygen reduction reaction.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.0c01094