Loading…
Small-scale modelling of root-soil interaction of trees under lateral loads
Aim (1) To understand the tree root-soil interaction under lateral and moment loading using a physical modelling technique; (2) To detect the possible factors (e.g. root architecture, water condition, and stress level) influencing a tree’s push-over behaviour; (3) To identify suitable scaling laws t...
Saved in:
Published in: | Plant and soil 2020-11, Vol.456 (1-2), p.289-305 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aim
(1) To understand the tree root-soil interaction under lateral and moment loading using a physical modelling technique; (2) To detect the possible factors (e.g. root architecture, water condition, and stress level) influencing a tree’s push-over behaviour; (3) To identify suitable scaling laws to use in physical modelling.
Methods
Two 1:20 scaled root models with different architectures (namely, deep and narrow, and shallow and wide) were reconstructed and 3D printed based on the field-surveyed root architecture data. Push-over tests were performed both in elevated-gravity (centrifuge 20-
g
) and normal-gravity (1-
g
) conditions.
Results
The shallow and wide model showed higher anchorage strength than the deep and narrow model. Regardless of the root architecture, the root anchorage strength measured from dry soil was higher than that from saturated soil. However, once the effective stress was the same, regardless of water conditions, the root anchorage strength would be the same.
Conclusions
The presence of water decreasing the soil effective stress and key lateral roots extending along the wind direction play a significant role on a tree’s push-over resistance. Centrifuge tests showed comparable results to the field pull-over measurements while 1-
g
model tests overestimated the root-soil interaction, which could be corrected for soil strength by using modified scaling laws. |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-020-04636-8 |