Loading…
Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos
Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a ) to enable and infer uncertainties in a parameterized prior field. The feasibility...
Saved in:
Published in: | Ocean dynamics 2020-08, Vol.70 (8), p.1103-1127 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228,
2016a
) to enable and infer uncertainties in a parameterized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s
n
field in a coastal ocean model. The idea is to view the prior on the Manning’s
n
field as a stochastic Gaussian field, expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loève (KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate transformation, is then applied to the prior field. To improve the computational efficiency of the method proposed in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228,
2016a
), we propose to use two polynomial chaos expansions to (i) approximate the coordinate transformation and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experiment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s
n
field, compared with using a covariance with fixed hyper-parameters. |
---|---|
ISSN: | 1616-7341 1616-7228 |
DOI: | 10.1007/s10236-020-01382-4 |