Loading…

Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos

Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a ) to enable and infer uncertainties in a parameterized prior field. The feasibility...

Full description

Saved in:
Bibliographic Details
Published in:Ocean dynamics 2020-08, Vol.70 (8), p.1103-1127
Main Authors: Siripatana, Adil, Le Maitre, Olivier, Knio, Omar, Dawson, Clint, Hoteit, Ibrahim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a ) to enable and infer uncertainties in a parameterized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s n field in a coastal ocean model. The idea is to view the prior on the Manning’s n field as a stochastic Gaussian field, expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loève (KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate transformation, is then applied to the prior field. To improve the computational efficiency of the method proposed in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a ), we propose to use two polynomial chaos expansions to (i) approximate the coordinate transformation and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experiment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s n field, compared with using a covariance with fixed hyper-parameters.
ISSN:1616-7341
1616-7228
DOI:10.1007/s10236-020-01382-4