Loading…
Schauder estimates for fractional Laplacians and non-local, one-dimensional singular SPDEs
We examine in this article the one-dimensional, non-local, singular SPDE \begin{equation*} \partial_t u \;=\; -\, (-\Delta)^{1/2} u \,-\, \sinh(\gamma u) \,+\, \xi\;, \end{equation*} where $\gamma\in \mathbb{R}$, $(-\Delta)^{1/2}$ is the fractional Laplacian of order $1/2$, $\xi$ the space-time whit...
Saved in:
Published in: | SIAM journal on mathematical analysis 2022 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examine in this article the one-dimensional, non-local, singular SPDE \begin{equation*} \partial_t u \;=\; -\, (-\Delta)^{1/2} u \,-\, \sinh(\gamma u) \,+\, \xi\;, \end{equation*} where $\gamma\in \mathbb{R}$, $(-\Delta)^{1/2}$ is the fractional Laplacian of order $1/2$, $\xi$ the space-time white noise in $\mathbb{R} \times \mathbb{T}$, and $\mathbb{T}$ the one-dimensional torus. We show that for $0 |
---|---|
ISSN: | 0036-1410 |
DOI: | 10.1137/20M1382829 |