Loading…

Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions

Marine ecological indicators can be used to assess the condition of the pelagic ecosystems. The bloom onset provides a warning bell for possible changes in trophic interactions and biogeochemical processes. However, depicting the phenology of phytoplankton blooms at high latitudes, where long-term o...

Full description

Saved in:
Bibliographic Details
Published in:Polar biology 2017-09, Vol.40 (9), p.1721-1737
Main Authors: Marchese, Christian, Albouy, Camille, Tremblay, Jean-Éric, Dumont, Dany, D’Ortenzio, Fabrizio, Vissault, Steve, Bélanger, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine ecological indicators can be used to assess the condition of the pelagic ecosystems. The bloom onset provides a warning bell for possible changes in trophic interactions and biogeochemical processes. However, depicting the phenology of phytoplankton blooms at high latitudes, where long-term observations are sparse or unavailable, is not a straightforward task. A data-interpolating empirical orthogonal function algorithm was applied to daily satellite-retrieved chlorophyll- a images to produce a long-term (1998–2014) and cloud-free data set over the North Water (NOW) polynya. The seasonal bloom was modeled using a multi-Gaussian approach from which a baseline of phenological characteristics was extracted. The correlation analysis highlights the influence of environmental factors, such as sea surface temperature, cloud fraction, wind stress, and sea-ice concentration, in modulating the bloom start date, its duration, and amplitude. The year-to-year variability in bloom onset appears to be controlled by a delicate balance between oceanographic and meteorological conditions. Blooms last longer during years characterized by a longer open-water period and are shorter during those characterized by greater sea-ice coverage. Noteworthy is the decrease in phytoplankton bloom amplitude over the 17 years examined. Collectively, these outcomes depict the NOW as a climate-sensitive region in which the pelagic marine ecosystem seems to be going toward a decline in chlorophyll- a concentrations. Satellite time series are still too short to differentiate between inter-annual variability, inter-decadal variability, and climate change signal. Should these changes persist; however, the NOW may no longer act as a productive regional oasis supporting thriving populations of zooplankton and top predators.
ISSN:0722-4060
1432-2056
DOI:10.1007/s00300-017-2095-2