Loading…

Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study

Purpose: The purpose of this study was to investigate the ability and efficacy of inducing sonoporation in a clinical setting, using commercially available technology, to increase the patients’ quality of life and extend the low Eastern Cooperative Oncology Group performance grade; as a result incre...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) 2013-07, Vol.40 (7), p.072902-n/a
Main Authors: Kotopoulis, Spiros, Dimcevski, Georg, Helge Gilja, Odd, Hoem, Dag, Postema, Michiel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: The purpose of this study was to investigate the ability and efficacy of inducing sonoporation in a clinical setting, using commercially available technology, to increase the patients’ quality of life and extend the low Eastern Cooperative Oncology Group performance grade; as a result increasing the overall survival in patients with pancreatic adenocarcinoma. Methods: Patients were treated using a customized configuration of a commercial clinical ultrasound scanner over a time period of 31.5 min following standard chemotherapy treatment with gemcitabine. SonoVue® ultrasound contrast agent was injected intravascularly during the treatment with the aim to induce sonoporation. Results: Using the authors’ custom acoustic settings, the authors’ patients were able to undergo an increased number of treatment cycles; from an average of 9 cycles, to an average of 16 cycles when comparing to a historical control group of 80 patients. In two out of five patients treated, the maximum tumor diameter was temporally decreased to 80 ± 5% and permanently to 70 ± 5% of their original size, while the other patients showed reduced growth. The authors also explain and characterize the settings and acoustic output obtained from a commercial clinical scanner used for combined ultrasound microbubble and chemotherapy treatment. Conclusions: It is possible to combine ultrasound, microbubbles, and chemotherapy in a clinical setting using commercially available clinical ultrasound scanners to increase the number of treatment cycles, prolonging the quality of life in patients with pancreatic adenocarcinoma compared to chemotherapy alone.
ISSN:0094-2405
2473-4209
DOI:10.1118/1.4808149