Loading…
Pricing without no-arbitrage condition in discrete time
In a discrete time setting, we study the central problem of giving a fair price to some financial product. This problem has been mostly treated using martingale measures and no-arbitrage conditions. We propose a different approach based on convex duality instead of martingale measures duality: The p...
Saved in:
Published in: | Journal of mathematical analysis and applications 2022-01, Vol.505 (1), p.125441, Article 125441 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In a discrete time setting, we study the central problem of giving a fair price to some financial product. This problem has been mostly treated using martingale measures and no-arbitrage conditions. We propose a different approach based on convex duality instead of martingale measures duality: The prices are expressed using Fenchel conjugate and bi-conjugate without using any no-arbitrage condition. The super-hedging problem resolution leads endogenously to a weak no-arbitrage condition called Absence of Instantaneous Profit (AIP) under which prices are finite. We study this condition in detail, propose several characterizations and compare it to the usual no-arbitrage condition NA. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125441 |