Loading…
Homo- and Hetero-oligomerization of β-Arrestins in Living Cells
Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous β-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the a...
Saved in:
Published in: | The Journal of biological chemistry 2005-12, Vol.280 (48), p.40210-40215 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous β-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of β-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged β-arrestins and resonance energy transfer (BRET and FRET) in living cells. At steady state and at physiological concentrations, β-arrestins constitutively form both homo- and hetero-oligomers. Co-expression of β-arrestin2 and β-arrestin1 prevented β-arrestin1 accumulation into the nucleus, suggesting that hetero-oligomerization may have functional consequences. Our data clearly indicate that β-arrestins can exist as homo- and hetero-oligomers in living cells and raise the hypothesis that the oligomeric state may regulate their subcellular distribution and functions. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M508001200 |